Review
BibTex RIS Cite

Carbohydrate active enzyme system in rumen fungi: a review

Year 2022, Volume: 9 Issue: 3, 320 - 334, 26.09.2022
https://doi.org/10.21448/ijsm.1075030

Abstract

Hydrolysis and dehydration reactions of carbohydrates, which are used as energy raw materials by all living things in nature, are controlled by Carbohydrate Active Enzyme (CAZy) systems. These enzymes are also used in different industrial areas today. There are different types of microorganisms that have the CAZy system and are used in the industrial sector. Apart from current organisms, there are also rumen fungi within the group of candidate microorganisms with the CAZy system. It has been reported that xylanase (EC3.2.1.8 and EC3.2.1.37) enzyme, a member of the glycoside hydrolase enzyme family obtained from Trichoderma sp. and used especially in areas such as bread, paper, and feed industry, is more synthesized in rumen fungi such as Orpinomyces sp. and Neocallimastix sp. Therefore, this study reviews Neocallimastixsp., Orpinomyces sp., Caecomyces sp., Piromyces sp., and Anaeromyces sp., registered in the CAZy and Mycocosm database for rumen fungi to have both CAZy enzyme activity and to be an alternative microorganism in the industry. Furthermore the CAZy enzyme activities of the strains are investigated. The review shows thatNeocallimax sp. and Orpinomyces sp. areconsidered as candidate microorganisms.

References

  • Abdul Manas, N.H., Md. Illias, R., & Mahadi, N.M. (2018). Strategy in manipulating transglycosylation activity of glycosyl hydrolase for oligosaccharide production. Critical Reviews in Biotechnology, 38(2), 272-293. https://doi.org/10.1080/07388551.2017.1339664
  • Agustına, S., Wıryawan, K.G., Suhartı, S., & Meryandını, A. (2022). The enrichment process and morphological identification of anaerobic fungi isolated from buffalo rumen. Biodiversitas Journal of Biological Diversity, 23(1). https://doi.org/10.13057/biodiv/d230150
  • Ali, B.R., Zhou, L., Graves, F.M., Freedman, R.B., Black, G.W., Gilbert, H.J., & Hazlewood, G.P. (1995). Cellulases and hemicellulases of the anaerobic fungus Piromyces constitute a multiprotein cellulose-binding complex and are encoded by multigene families. FEMS Microbiology Letters, 125(1), 15-21. https://doi.org/10.1111/j.1574-6968.1995.tb07329.x
  • Asp, N.G. (1996). Dietary carbohydrates: classification by chemistry and physiology. Food Chemistry, 57(1), 9-14. https://doi.org/10.1016/0308-8146(96)00055-6
  • Ausland, C., Zheng, J., Yi, H., Yang, B., Li, T., Feng, X., Zheng, B., & Yin, Y. (2021). dbCAN-PUL: a database of experimentally characterized CAZyme gene clusters and their substrates. Nucleic Acids Research, 49(D1), D523 D528. https://doi.org/10.1093/nar/gkaa742
  • Barrett, K., & Lange, L. (2019). Peptide-based functional annotation of carbohydrate-active enzymes by conserved unique peptide patterns (CUPP). Biotechnology for Biofuels, 12(1), 1-21. https://doi.org/10.1186/s13068-019-1436-5
  • Benson, D.A., Karsch‐Mizrachi, I., Lipman, D.J., Ostell, J., & Wheeler, D.L. (2004). GenBank: update. Nucleic Acids Research, 32(suppl_1), D23-D26. https://doi.org/10.1093/nar/gkh045
  • Bhutto, A.W., Qureshi, K., Harijan, K., Abro, R., Abbas, T., Bazmi, A.A., Karim,S., & Yu, G. (2017). Insight into progress in pre-treatment of lignocellulosic biomass. Energy, 122, 724-745. https://doi.org/10.1016/j.energy.2017.01.005
  • Biely, P. (2012). Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnology Advances, 30(6), 1575 1588. https://doi.org/10.1016/j.biotechadv.2012.04.010
  • Biorender. https://biorender.com/ (31/07/2022).
  • Blackman, L.M., Cullerne, D.P., Torrena, P., Taylor, J., & Hardham, A.R. (2015). RNA-Seq analysis of the expression of genes encoding cell wall degrading enzymes during infection of lupin (Lupinus angustifolius) by Phytophthora parasitica. PLoS One, 10(9), e0136899. https://doi.org/10.1371/journal.pone.0136899
  • Blum, D.L., Li, X.L., Chen, H., & Ljungdahl, L.G. (1999). Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Applied and Environmental Microbiology, 65(9), 3990-3995. https://doi.org/10.1128/AEM.65.9.3990-3995.1999
  • Blum, M., Chang, H.Y., Chuguransky, S., Grego, T., Kandasaamy, S., Mitchell, A., ... & Finn, R. D. (2021). The InterPro protein families and domains database: 20 years on. Nucleic Acids Research, 49(D1), D344-D354. https://doi.org/10.1093/nar/gkaa977
  • Bredon, M., Herran, B., Lheraud, B., Bertaux, J., Grève, P., Moumen, B., & Bouchon, D. (2019). Lignocellulose degradation in isopods: new insights into the adaptation to terrestrial life. BMC genomics, 20(1), 1-14. https://doi.org/10.1186/s12864-019-5825-8
  • Breton, A., Gaillard-Martine, B., Gerbi, C., de Ségura, B.G., Durand, R., & Kherratia, B. (1995). Location by fluorescence microscopy of glycosidases and a xylanase in the anaerobic gut fungi Caecomyces communis, Neocallimastix frontalis, and Piromyces rhizinflata. Current Microbiology, 31(4), 224-227. https://doi.org/10.1007/BF00298378
  • Brown, J.L., Swift, C.L., Mondo, S.J., Seppala, S., Salamov, A., Singan, V., Henrissat B.,Drula E., Henkes J.K.,Lee, S., Labutti,He,G.,Yan, M., Barry,K.., Grigoriev,I.V., & O’Malley, M. A. (2021). Co cultivation of the anaerobic fungus Caecomyces churrovis with Methanobacterium bryantii enhances transcription of carbohydrate binding modules, dockerins, and pyruvate formate lyases on specific substrates. Biotechnology for BİOFUELS, 14(1), 1-16. https://doi.org/10.1186/s13068-021-02083-w
  • Campbell, J.A., Davies, G.J., Bulone, V., & Henrissat, B. (1998). A classification of nucleotide-diphospho sugar glycosyltransferases based on amino acid sequence similarities. Biochemical Journal, 329(Pt 3), 719. https://doi.org/10.1042/bj3290719
  • Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research, 37(suppl_1), D233 D238. https://doi.org/10.1093/nar/gkn663
  • Cazym. http://www.cazy.org/ (31/07/2022).
  • Chen, H.L., Chen, Y.C., Lu, M.Y.J., Chang, J.J., Wang, H.T.C., Ke, H.M., Wang, TY.,Hung, KY.,Cho, H.Y., Lin, W.T., Shih, M.C.,& Li, W. H. (2012). A highly efficient β-glucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5. Biotechnology for Biofuels, 5(1), 1-10. https://doi.org/10.1186/1754-6834-5-24
  • Chu, C.Y., Tseng, C.W., Yueh, P.Y., Duan, C.H., & Liu, J.R. (2011). Molecular cloning and characterization of a β-glucanase from Piromyces rhizinflatus. Journal of Bioscience and Bioengineering, 111(5), 541-546. https://doi.org/10.1016/j.jbiosc.2011.01.009
  • Coutinho, P.M. (1999). Carbohydrate-active enzymes: an integrated database approach. Recent Advances in Carbohydrate Bioengineering.pp 3-12, Royal Society of Chemistry, Cambridge
  • Coutinho, P.M., Stam, M., Blanc, E., & Henrissat, B. (2003). Why are there so many carbohydrate-active enzyme-related genes in plants?. Trends in Plant Science, 8(12), 563-565. https://doi.org/10.1016/j.tplants.2003.10.002
  • da Costa, R.M., Pattathil, S., Avci, U., Winters, A., Hahn, M.G., & Bosch, M. (2019). Desirable plant cell wall traits for higher-quality miscanthus lignocellulosic biomass. Biotechnology for Biofuels, 12(1), 1-18. https://doi.org/10.1186/s13068-019-1426-7
  • Daly, P., van Munster, J.M., Kokolski, M., Sang, F., Blythe, M.J., Malla, S., Oliveria, J.V.C., Goldman, G.H., & Archer, D.B. (2017). Transcriptomic responses of mixed cultures of ascomycete fungi to lignocellulose using dual RNA-seq reveal inter-species antagonism and limited beneficial effects on CAZyme expression. Fungal Genetics and Biology, 102, 4-21. https://doi.org/10.1016/j.fgb.2016.04.005
  • Davies, G.J., & Williams, S.J. (2016). Carbohydrate-active enzymes: sequences, shapes, contortions and cells. Biochemical Society Transactions, 44(1), 79 87. https://doi.org/10.1042/BST20150186
  • Davies, G.J., Gloster, T.M., & Henrissat, B. (2005). Recent structural insights into the expanding world of carbohydrate-active enzymes. Current Opinion in Structural Biology, 15(6), 637-645. https://doi.org/10.1016/j.sbi.2005.10.008
  • Ekinci, M.S., Özköse, E., & Akyol, İ. (2006). Effects of sequential sub-culturing on the survival and enzyme activity of Neocallimastix hurleyensis. Turkish Journal of Biology, 30(3), 157-162.
  • Gruninger, R.J., Puniya, A.K., Callaghan, T.M., Edwards, J.E., Youssef, N., Dagar, S.S., Fliegerova, K., Griffith, G.W.,Forster, R., Tsang, A., Mcallister, T., & Elshahed, M. S. (2014). Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiology Ecology, 90(1), 1-17. https://doi.org/10.1111/1574-6941.12383
  • Guo, H., Wang, X.D., & Lee, D.J. (2018). Proteomic researches for lignocellulose-degrading enzymes: A mini review. Bioresource Technology, 265, 532 541. https://doi.org/10.1016/j.biortech.2018.05.101
  • Haitjema, C.H., Gilmore, S.P., Henske, J.K., Solomon, K.V., De Groot, R., Kuo, A., Mondo, S.J., Salamov, A.A., LaButti, K., Zhao, Z., Chiniquy, J., Barry, K., Brewer, H.M., Purvine, S.O., Wright, A.T., Hainaut, M., Boxma, B., van Alen, T., Hackstein, J.H.P., Henrissat, B., Baker, S.E., Grigoriev I.V., & O'malley, M. A. (2017). A parts list for fungal cellulosomes revealed by comparative genomics. Nature Microbiology, 2(8), 1-8. https://doi.org/10.1038/nmicrobiol.2017.87
  • Haitjema, C.H., Solomon, K.V., Henske, J.K., Theodorou, M.K., & O'Malley, M.A. (2014). Anaerobic gut fungi: advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnology and Bioengineering, 111(8), 1471 1482. https://doi.org/10.1002/bit.25264
  • Hanafy, R.A., Lanjekar, V.B., Dhakephalkar, P.K., Callaghan, T.M., Dagar, S.S., Griffith, G.W., Elshahed, M.S., & Youssef, N. H. (2020). Seven new Neocallimastigomycota genera from wild, zoo-housed, and domesticated herbivores greatly expand the taxonomic diversity of the phylum. Mycologia, 112(6), 1212 1239. https://doi.org/10.1080/00275514.2019.1696619
  • Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal, 280(2), 309-316. https://doi.org/10.1042/bj2800309
  • Henske, J.K., Gilmore, S.P., Haitjema, C.H., Solomon, K.V., & O'Malley, M.A. (2018). Biomass‐degrading enzymes are catabolite repressed in anaerobic gut fungi. AIChE Journal, 64(12), 4263-4270. https://doi.org/10.1002/aic.16395
  • Hess, M., Paul, S.S., Puniya, A.K., Van der Giezen, M., Shaw, C., Edwards, J.E., & Fliegerová, K. (2020). Anaerobic fungi: past, present, and future. Frontiers in Microbiology, 11, 584893. https://doi.org/10.3389/fmicb.2020.584893
  • Hibbett, D.S. (2007). After the gold rush, or before the flood? Evolutionary morphology of mushroom-forming fungi (Agaricomycetes) in the early 21st century. Mycological Research, 111(9), 1001-1018. https://doi.org/10.1016/j.mycres.2007.01.012
  • Huang, L., Zhang, H., Wu, P., Entwistle, S., Li, X., Yohe, T., Yi, H., Yang, Z.,& Yin, Y. (2018). dbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Research, 46(D1), D516 D521. https://doi.org/10.1093/nar/gkx894
  • Huang, Y., Zhang, N.J., & Zhao, Z. (2021). Immobilization of mutated xylanase from Neocallimastix patriciarum in E. coli and application for kraft pulp biobleaching. Brazilian Journal of Biology, 83. https://doi.org/10.1590/1519-6984.243629
  • İnci, H., Özköse, E., Ekinci, M. S., Kuzugüdenli, E., Aydin, E., Kar, B., Yazdıç, F.C., Yazdıç, F., Işık,S., & Kaya, C. (2020). Ziraat Çalışmaları Ve Çiftlik Hayvanlarında İleri Biyoteknolojik Uygulamalar (syf 3-49) [Advanced Biotechnological Applications in Agricultural Studies and Livestock.(p. 3-49)]. Baskı (iksadyayinevi.com)
  • Jin, X., & Xia, L. (2011). Heterologous expression of an endo-β-1, 4-glucanase gene from the anaerobic fungus Orpinomyces PC-2 in Trichoderma reesei. World Journal of Microbiology and Biotechnology, 27(12), 2913-2920. https://doi.org/10.1007/s11274-011-0774-7
  • Kameshwar, A.K.S., Ramos, L.P., & Qin, W. (2019). CAZymes-based ranking of fungi (CBRF): an interactive web database for identifying fungi with extrinsic plant biomass degrading abilities. Bioresources and Bioprocessing, 6(1), 1 10. https://doi.org/10.1186/s40643-019-0286-0
  • Sigmaaldrich. https://www.sigmaaldrich.com/TR/en/product/sigma/g4423 (31/07/2022).
  • Sista Kameshwar, A.K., & Qin, W. (2018). Comparative study of genome-wide plant biomass-degrading CAZymes in white rot, brown rot and soft rot fungi. Mycology, 9(2), 93-105. https://doi.org/10.1080/21501203.2017.1419296
  • Kaminskyj, S.G., & Heath, M.C. (1983). Histological responses of infection structures and intercellular mycelium of Uromyces phaseoli var. typica and U. phaseoli var. vignae to the HNO2-MBTH-FeCl3 and the IKI-H2SO4 tests. Physiological Plant Pathology, 22(2), 173-IN4. https://doi.org/10.1016/S0048-4059(83)81006-6
  • Kar, B., Özköse, E., & Ekinci, M.S. (2021). The comparisons of fatty acid composition in some anaerobic gut fungi Neocallimastix, Orpinomyces, Piromyces, and Caecomyces. Anais da Academia Brasileira de Ciências, 93. https://doi.org/10.1590/0001-3765202120200896
  • Krastanova, I., Guarnaccia, C., Zahariev, S., Degrassi, G., & Lamba, D. (2005). Heterologous expression, purification, crystallization, X-ray analysis and phasing of the acetyl xylan esterase from Bacillus pumilus. Biochimica Et Biophysica Acta (Bba)-Proteins and Proteomics, 1748(2), 222-230. https://doi.org/10.1016/j.bbapap.2005.01.003
  • Kwon, M., Song, J., Park, H.S., Park, H., & Chang, J. (2016). Characterization of heterologously expressed acetyl xylan esterase1 isolated from the anaerobic rumen fungus Neocallimastix frontalis PMA02. Asian-Australasian Journal of Animal Sciences, 29(11), 1576-1584. https://doi.org/10.5713/ajas.16.0336
  • Lange, L., Barrett, K., Pilgaard, B., Gleason, F., & Tsang, A. (2019). Enzymes of early-diverging, zoosporic fungi. Applied Microbiology and Biotechnology, 103(17), 6885-6902. https://doi.org/10.1007/s00253-019-09983-w
  • Levasseur, A., Drula, E., Lombard, V., Coutinho, P. M., & Henrissat, B. (2013). Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnology for Biofuels, 6(1), 1-14. https://doi.org/10.1186/1754-6834-6-41
  • Li, Y., Meng, Z., Xu, Y., Shi, Q., Ma, Y., Aung, M., Cheng, Y., & Zhu, W. (2021). Interactions between anaerobic fungi and methanogens in the rumen and their biotechnological potential in biogas production from lignocellulosic materials. Microorganisms, 9(1), 190. https://doi.org/10.3390/microorganisms9010190
  • Liang, J., Nabi, M., Zhang, P., Zhang, G., Cai, Y., Wang, Q., Zhou, Z., & Ding, Y. (2020). Promising biological conversion of lignocellulosic biomass to renewable energy with rumen microorganisms: A comprehensive review. Renewable and Sustainable Energy Reviews, 134, 110335. https://doi.org/10.1016/j.rser.2020.110335
  • Lombard, V., Bernard, T., Rancurel, C., Brumer, H., Coutinho, P.M., & Henrissat, B. (2010). A hierarchical classification of polysaccharide lyases for glycogenomics. Biochemical Journal, 432(3), 437-444. https://doi.org/10.1042/BJ20101185
  • Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P.M., & Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 42(D1), D490-D495. https://doi.org/10.1093/nar/gkt1178
  • Lowe, S.E., Griffith, G.G., Milne, A., Theodorou, M.K., & Trinci, A.P. (1987). The life cycle and growth kinetics of an anaerobic rumen fungus. Microbiology, 133(7), 1815-1827. https://doi.org/10.1099/00221287-133-7-1815
  • Min, B., Park, J.H., Park, H., Shin, H.D., & Choi, I.G. (2017). Genome analysis of a zygomycete fungus Choanephora cucurbitarum elucidates necrotrophic features including bacterial genes related to plant colonization. Scientific Reports, 7(1), 1 11. https://doi.org/10.1038/srep40432
  • Mountfort, D.O., & Asher, R.A. (1989). Production of xylanase by the ruminal anaerobic fungus Neocallimastix frontalis. Applied and Environmental Microbiology, 55(4), 1016-1022. https://doi.org/10.1128/aem.55.4.1016-1022.1989
  • MycoCosm. (2022, July 31). https://mycocosm.jgi.doe.gov/neocallimastigomycetes/neocallimas tigomycetes.info.html
  • Novotná, Z., Procházka, J., Šimůnek, J., & Fliegerová, K. (2010). Xylanases of anaerobic fungus Anaeromyces mucronatus. Folia Microbiologica, 55(4), 363 367. https://doi.org/10.1007/s12223-010-0059-9 Orpin, C.G. (1975). Studies on the rumen flagellate Neocallimastix frontalis. Microbiology, 91(2), 249-262. https://doi.org/10.1099/00221287-91-2-249
  • Orpin, C.G. (1977). Invasion of plant tissue in the rumen by the flagellate Neocallimastix frontalis. Microbiology, 98(2), 423-430. https://doi.org/10.1099/00221287-98-2-423
  • Park, S., Lee, B., & Park, K. (2017). Extremophilic carbohydrate active enzymes (CAZymes). J Nutr Health Food Eng, 7(1), 1-9. https://doi.org/10.15406/jnhfe.2017.07.00230
  • Passarinho, A.T.P., Ventorim, R.Z., Maitan‐Alfenas, G.P., de Oliveira, E.B., & Guimarães, V.M. (2019). Engineered GH11 xylanases from Orpinomyces sp. PC‐2 improve techno‐functional properties of bread dough. Journal of the Science of Food and Agriculture, 99(2), 741-747. https://doi.org/10.1002/jsfa.9242
  • Pearse, I.S., Harris, D.J., Karban, R., & Sih, A. (2013). Predicting novel herbivore–plant interactions. Oikos, 122(11), 1554-1564. https://doi.org/10.1111/j.1600-0706.2013.00527.x
  • Pettersen, R.C. (1984). The chemical composition of wood. The chemistry of solid wood, 207, 57-126.
  • Qi, M., Wang, P., Selinger, L.B., Yanke, L.J., Forster, R.J., & McAllister, T.A. (2011). Isolation and characterization of a ferulic acid esterase (Fae1A) from the rumen fungus Anaeromyces mucronatus. Journal of Applied Microbiology, 110(5), 1341 1350. https://doi.org/10.1111/j.1365-2672.2011.04990.x
  • Razeq, F.M., Jurak, E., Stogios, P.J., Yan, R., Tenkanen, M., Kabel, M.A., Wang, W., & Master, E. R. (2018). A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans. Biotechnology for Biofuels, 11(1), 1-12. https://doi.org/10.1186/s13068-018-1074-3
  • Richardson, L.J., Rawlings, N.D., Salazar, G.A., Almeida, A., Haft, D.R., Ducq, G., Sutton, G.G., & Finn, R.D. (2019). Genome properties in 2019: a new companion database to InterPro for the inference of complete functional attributes. Nucleic Acids Research, 47(D1), D564-D572. https://doi.org/10.1093/nar/gky1013
  • Saye, L.M., Navaratna, T.A., Chong, J.P., O’Malley, M.A., Theodorou, M.K., & Reilly, M. (2021). The anaerobic fungi: Challenges and opportunities for industrial lignocellulosic biofuel production. Microorganisms, 9(4), 694. https://doi.org/10.3390/microorganisms9040694
  • Singh, Y.D., Mahanta, P., & Bora, U. (2017). Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renewable Energy, 103, 490 500. https://doi.org/10.1016/j.renene.2016.11.039
  • Solden, L.M., Naas, A.E., Roux, S., Daly, R.A., Collins, W.B., Nicora, C.D., Purvine, S.O., Hoyt, D.W., Schückel, J., Jørgensen, B., Willats, W., Spalinger, D.E., Firkins, J.L., Lipton, M.S., Sullivan, M.B., Pope, P.B., & Wrighton, K. C. (2018). Interspecies cross-feeding orchestrates carbon degradation in the rumen ecosystem. Nature Microbiology, 3(11), 1274-1284. https://doi.org/10.1038/s41564-018-0225-4
  • Solomon, K.V., Haitjema, C.H., Henske, J.K., Gilmore, S.P., Borges-Rivera, D., Lipzen, A., Brewer, H.M., Purvine, S.O., Wright, A.T., Theodorou, M.K., Grigoriev, I.V., Regev, A., Thompson, A.V., & O’Malley, M. A. (2016). Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science, 351(6278), 1192-1195. https://doi.org/10.1126/science.aad1431
  • Terry, S.A., Badhan, A., Wang, Y., Chaves, A.V., & McAllister, T.A. (2019). Fibre digestion by rumen microbiota—a review of recent metagenomic and metatranscriptomic studies. Canadian Journal of Animal Science, 99(4), 678-692. https://doi.org/10.1139/cjas-2019-0024
  • Trinci, A.P., Davies, D.R., Gull, K., Lawrence, M.I., Nielsen, B.B., Rickers, A., & Theodorou, M.K. (1994). Anaerobic fungi in herbivorous animals. Mycological Research, 98(2), 129-152. https://doi.org/10.1016/S0953-7562(09)80178-0
  • Tsapekos, P., Kougias, P.G., & Angelidaki, I. (2018). Mechanical pretreatment for increased biogas production from lignocellulosic biomass; predicting the methane yield from structural plant components. Waste Management, 78, 903 910. https://doi.org/10.1016/j.wasman.2018.07.017
  • Tseng, C.W., Yeh, D. J., Chuang, F.T., Lee, S.C., & Liu, J.R. (2015). Immobilization of Piromyces rhizinflata β-glucanase on poly (dimethylsiloxane) and Si wafer and prediction of optimum reaction for enzyme activity. Preparative Biochemistry and Biotechnology, 45(1), 42-55. https://doi.org/10.1080/10826068.2014.887579
  • Ventorim, R.Z., de Oliveira Mendes, T.A., Trevizano, L.M., dos Santos Camargos, A.M., & Guimarães, V.M. (2018). Impact of the removal of N-terminal non-structured amino acids on activity and stability of xylanases from Orpinomyces sp. PC-2. International Journal of Biological Macromolecules, 106, 312-319. https://doi.org/10.1016/j.ijbiomac.2017.08.015
  • Vu, H.P., Nguyen, L.N., Vu, M.T., Johir, M.A.H., McLaughlan, R., & Nghiem, L.D. (2020). A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks. Science of the Total Environment, 743, 140630. https://doi.org/10.1016/j.scitotenv.2020.140630
  • Wang, D., Zhao, C., Liu, S., Zhang, T., Yao, J., & Cao, Y. (2019). Effects of Piromyces sp. CN6 CGMCC 14449 on fermentation quality, nutrient composition and the in vitro degradation rate of whole crop maize silage. AMB Express, 9(1), 1-8. https://doi.org/10.1186/s13568-019-0846-x
  • Wen, S., Wu, G., & Wu, H. (2021). Biochemical characterization of a GH10 xylanase from the anaerobic rumen fungus Anaeromyces robustus and application in bread making. 3 Biotech, 11(9), 1-12. https://doi.org/10.1007/s13205-021-02956-9
  • Wilken, S.E., Monk, J.M., Leggieri, P.A., Lawson, C.E., Lankiewicz, T. S., Seppälä, S., Daum, C.G., Jenkins, J., Lipzen, A.M., Mondo, S.J., Barry, K.W., Grigoriev, I.V., Henske, J.K., Theodorou, M.K., Palsson, B.B., Petzold, L.R.,& O’Malley, M. A. (2021). Experimentally validated reconstruction and analysis of a genome-scale metabolic model of an anaerobic Neocallimastigomycota fungus. Msystems, 6(1), e00002 21. https://doi.org/10.1128/mSystems.00002-21
  • Wood, T.M., Wilson, C.A., McCrae, S.I., & Joblin, K.N. (1986). A highly active extracellular cellulase from the anaerobic rumen fungus Neocallimastix frontalis. FEMS Microbiology Letters, 34(1), 37-40. https://doi.org/10.1111/j.1574-6968.1986.tb01344.x
  • Yanuartono, P.H., Indarjulianto, S., Nururrozi, A., Raharjo, S., & Haribowo, N. (2019). Perlakuan biologis dengan memanfaatkan fungi untuk meningkatkan kualitas pakan ternak asal hasil samping pertanian. Jurnal Peternakan Sriwijaya, 8(2), 18-34.
  • Yip, V.L., & Withers, S.G. (2006). Breakdown of oligosaccharides by the process of elimination. Current Opinion in Chemical Biology, 10(2), 147 155. https://doi.org/10.1016/j.cbpa.2006.02.005
  • Youssef, N.H., Couger, M.B., Struchtemeyer, C.G., Liggenstoffer, A.S., Prade, R.A., Najar, F.Z., Atiyeh, H.K., Wilkins, M.R.,& Elshahed, M.S. (2013). The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Applied and Environmental Microbiology, 79(15), 4620-4634. https://doi.org/10.1128/AEM.00821-13
  • Yuan, H., Yang, X., Chen, P., Liu, Y., Tang, G., & Zhao, Y. (2018). Appraisal of an oligomerization behavior of unprotected carbohydrates induced by phosphorus reagent. Science China Chemistry, 61(2), 243-250. https://doi.org/10.1007/s11426-017-9165-4
  • Zhang, S., Hu, B., Wei, W., Xiong, Y., Zhu, W., Peng, F., Yu, Y., Zheng, Y., & Chen, P. (2016). De novo analysis of Wolfiporia cocos transcriptome to reveal the differentially expressed carbohydrate-active enzymes (CAZymes) genes during the early stage of sclerotial growth. Frontiers in Microbiology, 7, 83. https://doi.org/10.3389/fmicb.2016.00083
  • Zhang, Y., Yang, H., Yu, X., Kong, H., Chen, J., Luo, H., Bai, Y.,& Yao, B. (2019). Synergistic effect of acetyl xylan esterase from Talaromyces leycettanus JCM12802 and xylanase from Neocallimastix patriciarum achieved by introducing carbohydrate-binding module-1. AMB Express, 9(1), 1-12. https://doi.org/10.1186/s13568-019-0740-6

Carbohydrate active enzyme system in rumen fungi: a review

Year 2022, Volume: 9 Issue: 3, 320 - 334, 26.09.2022
https://doi.org/10.21448/ijsm.1075030

Abstract

Hydrolysis and dehydration reactions of carbohydrates, which are used as energy raw materials by all living things in nature, are controlled by Carbohydrate Active Enzyme (CAZy) systems. These enzymes are also used in different industrial areas today. There are different types of microorganisms that have the CAZy system and are used in the industrial sector. Apart from current organisms, there are also rumen fungi within the group of candidate microorganisms with the CAZy system. It has been reported that xylanase (EC3.2.1.8 and EC3.2.1.37) enzyme, a member of the glycoside hydrolase enzyme family obtained from Trichoderma sp. and used especially in areas such as bread, paper, and feed industry, is more synthesized in rumen fungi such as Orpinomyces sp. and Neocallimastix sp. Therefore, this study reviews Neocallimastixsp., Orpinomyces sp., Caecomyces sp., Piromyces sp., and Anaeromyces sp., registered in the CAZy and Mycocosm database for rumen fungi to have both CAZy enzyme activity and to be an alternative microorganism in the industry. Furthermore the CAZy enzyme activities of the strains are investigated. The review shows thatNeocallimax sp. and Orpinomyces sp. areconsidered as candidate microorganisms.

References

  • Abdul Manas, N.H., Md. Illias, R., & Mahadi, N.M. (2018). Strategy in manipulating transglycosylation activity of glycosyl hydrolase for oligosaccharide production. Critical Reviews in Biotechnology, 38(2), 272-293. https://doi.org/10.1080/07388551.2017.1339664
  • Agustına, S., Wıryawan, K.G., Suhartı, S., & Meryandını, A. (2022). The enrichment process and morphological identification of anaerobic fungi isolated from buffalo rumen. Biodiversitas Journal of Biological Diversity, 23(1). https://doi.org/10.13057/biodiv/d230150
  • Ali, B.R., Zhou, L., Graves, F.M., Freedman, R.B., Black, G.W., Gilbert, H.J., & Hazlewood, G.P. (1995). Cellulases and hemicellulases of the anaerobic fungus Piromyces constitute a multiprotein cellulose-binding complex and are encoded by multigene families. FEMS Microbiology Letters, 125(1), 15-21. https://doi.org/10.1111/j.1574-6968.1995.tb07329.x
  • Asp, N.G. (1996). Dietary carbohydrates: classification by chemistry and physiology. Food Chemistry, 57(1), 9-14. https://doi.org/10.1016/0308-8146(96)00055-6
  • Ausland, C., Zheng, J., Yi, H., Yang, B., Li, T., Feng, X., Zheng, B., & Yin, Y. (2021). dbCAN-PUL: a database of experimentally characterized CAZyme gene clusters and their substrates. Nucleic Acids Research, 49(D1), D523 D528. https://doi.org/10.1093/nar/gkaa742
  • Barrett, K., & Lange, L. (2019). Peptide-based functional annotation of carbohydrate-active enzymes by conserved unique peptide patterns (CUPP). Biotechnology for Biofuels, 12(1), 1-21. https://doi.org/10.1186/s13068-019-1436-5
  • Benson, D.A., Karsch‐Mizrachi, I., Lipman, D.J., Ostell, J., & Wheeler, D.L. (2004). GenBank: update. Nucleic Acids Research, 32(suppl_1), D23-D26. https://doi.org/10.1093/nar/gkh045
  • Bhutto, A.W., Qureshi, K., Harijan, K., Abro, R., Abbas, T., Bazmi, A.A., Karim,S., & Yu, G. (2017). Insight into progress in pre-treatment of lignocellulosic biomass. Energy, 122, 724-745. https://doi.org/10.1016/j.energy.2017.01.005
  • Biely, P. (2012). Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnology Advances, 30(6), 1575 1588. https://doi.org/10.1016/j.biotechadv.2012.04.010
  • Biorender. https://biorender.com/ (31/07/2022).
  • Blackman, L.M., Cullerne, D.P., Torrena, P., Taylor, J., & Hardham, A.R. (2015). RNA-Seq analysis of the expression of genes encoding cell wall degrading enzymes during infection of lupin (Lupinus angustifolius) by Phytophthora parasitica. PLoS One, 10(9), e0136899. https://doi.org/10.1371/journal.pone.0136899
  • Blum, D.L., Li, X.L., Chen, H., & Ljungdahl, L.G. (1999). Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Applied and Environmental Microbiology, 65(9), 3990-3995. https://doi.org/10.1128/AEM.65.9.3990-3995.1999
  • Blum, M., Chang, H.Y., Chuguransky, S., Grego, T., Kandasaamy, S., Mitchell, A., ... & Finn, R. D. (2021). The InterPro protein families and domains database: 20 years on. Nucleic Acids Research, 49(D1), D344-D354. https://doi.org/10.1093/nar/gkaa977
  • Bredon, M., Herran, B., Lheraud, B., Bertaux, J., Grève, P., Moumen, B., & Bouchon, D. (2019). Lignocellulose degradation in isopods: new insights into the adaptation to terrestrial life. BMC genomics, 20(1), 1-14. https://doi.org/10.1186/s12864-019-5825-8
  • Breton, A., Gaillard-Martine, B., Gerbi, C., de Ségura, B.G., Durand, R., & Kherratia, B. (1995). Location by fluorescence microscopy of glycosidases and a xylanase in the anaerobic gut fungi Caecomyces communis, Neocallimastix frontalis, and Piromyces rhizinflata. Current Microbiology, 31(4), 224-227. https://doi.org/10.1007/BF00298378
  • Brown, J.L., Swift, C.L., Mondo, S.J., Seppala, S., Salamov, A., Singan, V., Henrissat B.,Drula E., Henkes J.K.,Lee, S., Labutti,He,G.,Yan, M., Barry,K.., Grigoriev,I.V., & O’Malley, M. A. (2021). Co cultivation of the anaerobic fungus Caecomyces churrovis with Methanobacterium bryantii enhances transcription of carbohydrate binding modules, dockerins, and pyruvate formate lyases on specific substrates. Biotechnology for BİOFUELS, 14(1), 1-16. https://doi.org/10.1186/s13068-021-02083-w
  • Campbell, J.A., Davies, G.J., Bulone, V., & Henrissat, B. (1998). A classification of nucleotide-diphospho sugar glycosyltransferases based on amino acid sequence similarities. Biochemical Journal, 329(Pt 3), 719. https://doi.org/10.1042/bj3290719
  • Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research, 37(suppl_1), D233 D238. https://doi.org/10.1093/nar/gkn663
  • Cazym. http://www.cazy.org/ (31/07/2022).
  • Chen, H.L., Chen, Y.C., Lu, M.Y.J., Chang, J.J., Wang, H.T.C., Ke, H.M., Wang, TY.,Hung, KY.,Cho, H.Y., Lin, W.T., Shih, M.C.,& Li, W. H. (2012). A highly efficient β-glucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5. Biotechnology for Biofuels, 5(1), 1-10. https://doi.org/10.1186/1754-6834-5-24
  • Chu, C.Y., Tseng, C.W., Yueh, P.Y., Duan, C.H., & Liu, J.R. (2011). Molecular cloning and characterization of a β-glucanase from Piromyces rhizinflatus. Journal of Bioscience and Bioengineering, 111(5), 541-546. https://doi.org/10.1016/j.jbiosc.2011.01.009
  • Coutinho, P.M. (1999). Carbohydrate-active enzymes: an integrated database approach. Recent Advances in Carbohydrate Bioengineering.pp 3-12, Royal Society of Chemistry, Cambridge
  • Coutinho, P.M., Stam, M., Blanc, E., & Henrissat, B. (2003). Why are there so many carbohydrate-active enzyme-related genes in plants?. Trends in Plant Science, 8(12), 563-565. https://doi.org/10.1016/j.tplants.2003.10.002
  • da Costa, R.M., Pattathil, S., Avci, U., Winters, A., Hahn, M.G., & Bosch, M. (2019). Desirable plant cell wall traits for higher-quality miscanthus lignocellulosic biomass. Biotechnology for Biofuels, 12(1), 1-18. https://doi.org/10.1186/s13068-019-1426-7
  • Daly, P., van Munster, J.M., Kokolski, M., Sang, F., Blythe, M.J., Malla, S., Oliveria, J.V.C., Goldman, G.H., & Archer, D.B. (2017). Transcriptomic responses of mixed cultures of ascomycete fungi to lignocellulose using dual RNA-seq reveal inter-species antagonism and limited beneficial effects on CAZyme expression. Fungal Genetics and Biology, 102, 4-21. https://doi.org/10.1016/j.fgb.2016.04.005
  • Davies, G.J., & Williams, S.J. (2016). Carbohydrate-active enzymes: sequences, shapes, contortions and cells. Biochemical Society Transactions, 44(1), 79 87. https://doi.org/10.1042/BST20150186
  • Davies, G.J., Gloster, T.M., & Henrissat, B. (2005). Recent structural insights into the expanding world of carbohydrate-active enzymes. Current Opinion in Structural Biology, 15(6), 637-645. https://doi.org/10.1016/j.sbi.2005.10.008
  • Ekinci, M.S., Özköse, E., & Akyol, İ. (2006). Effects of sequential sub-culturing on the survival and enzyme activity of Neocallimastix hurleyensis. Turkish Journal of Biology, 30(3), 157-162.
  • Gruninger, R.J., Puniya, A.K., Callaghan, T.M., Edwards, J.E., Youssef, N., Dagar, S.S., Fliegerova, K., Griffith, G.W.,Forster, R., Tsang, A., Mcallister, T., & Elshahed, M. S. (2014). Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiology Ecology, 90(1), 1-17. https://doi.org/10.1111/1574-6941.12383
  • Guo, H., Wang, X.D., & Lee, D.J. (2018). Proteomic researches for lignocellulose-degrading enzymes: A mini review. Bioresource Technology, 265, 532 541. https://doi.org/10.1016/j.biortech.2018.05.101
  • Haitjema, C.H., Gilmore, S.P., Henske, J.K., Solomon, K.V., De Groot, R., Kuo, A., Mondo, S.J., Salamov, A.A., LaButti, K., Zhao, Z., Chiniquy, J., Barry, K., Brewer, H.M., Purvine, S.O., Wright, A.T., Hainaut, M., Boxma, B., van Alen, T., Hackstein, J.H.P., Henrissat, B., Baker, S.E., Grigoriev I.V., & O'malley, M. A. (2017). A parts list for fungal cellulosomes revealed by comparative genomics. Nature Microbiology, 2(8), 1-8. https://doi.org/10.1038/nmicrobiol.2017.87
  • Haitjema, C.H., Solomon, K.V., Henske, J.K., Theodorou, M.K., & O'Malley, M.A. (2014). Anaerobic gut fungi: advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnology and Bioengineering, 111(8), 1471 1482. https://doi.org/10.1002/bit.25264
  • Hanafy, R.A., Lanjekar, V.B., Dhakephalkar, P.K., Callaghan, T.M., Dagar, S.S., Griffith, G.W., Elshahed, M.S., & Youssef, N. H. (2020). Seven new Neocallimastigomycota genera from wild, zoo-housed, and domesticated herbivores greatly expand the taxonomic diversity of the phylum. Mycologia, 112(6), 1212 1239. https://doi.org/10.1080/00275514.2019.1696619
  • Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal, 280(2), 309-316. https://doi.org/10.1042/bj2800309
  • Henske, J.K., Gilmore, S.P., Haitjema, C.H., Solomon, K.V., & O'Malley, M.A. (2018). Biomass‐degrading enzymes are catabolite repressed in anaerobic gut fungi. AIChE Journal, 64(12), 4263-4270. https://doi.org/10.1002/aic.16395
  • Hess, M., Paul, S.S., Puniya, A.K., Van der Giezen, M., Shaw, C., Edwards, J.E., & Fliegerová, K. (2020). Anaerobic fungi: past, present, and future. Frontiers in Microbiology, 11, 584893. https://doi.org/10.3389/fmicb.2020.584893
  • Hibbett, D.S. (2007). After the gold rush, or before the flood? Evolutionary morphology of mushroom-forming fungi (Agaricomycetes) in the early 21st century. Mycological Research, 111(9), 1001-1018. https://doi.org/10.1016/j.mycres.2007.01.012
  • Huang, L., Zhang, H., Wu, P., Entwistle, S., Li, X., Yohe, T., Yi, H., Yang, Z.,& Yin, Y. (2018). dbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Research, 46(D1), D516 D521. https://doi.org/10.1093/nar/gkx894
  • Huang, Y., Zhang, N.J., & Zhao, Z. (2021). Immobilization of mutated xylanase from Neocallimastix patriciarum in E. coli and application for kraft pulp biobleaching. Brazilian Journal of Biology, 83. https://doi.org/10.1590/1519-6984.243629
  • İnci, H., Özköse, E., Ekinci, M. S., Kuzugüdenli, E., Aydin, E., Kar, B., Yazdıç, F.C., Yazdıç, F., Işık,S., & Kaya, C. (2020). Ziraat Çalışmaları Ve Çiftlik Hayvanlarında İleri Biyoteknolojik Uygulamalar (syf 3-49) [Advanced Biotechnological Applications in Agricultural Studies and Livestock.(p. 3-49)]. Baskı (iksadyayinevi.com)
  • Jin, X., & Xia, L. (2011). Heterologous expression of an endo-β-1, 4-glucanase gene from the anaerobic fungus Orpinomyces PC-2 in Trichoderma reesei. World Journal of Microbiology and Biotechnology, 27(12), 2913-2920. https://doi.org/10.1007/s11274-011-0774-7
  • Kameshwar, A.K.S., Ramos, L.P., & Qin, W. (2019). CAZymes-based ranking of fungi (CBRF): an interactive web database for identifying fungi with extrinsic plant biomass degrading abilities. Bioresources and Bioprocessing, 6(1), 1 10. https://doi.org/10.1186/s40643-019-0286-0
  • Sigmaaldrich. https://www.sigmaaldrich.com/TR/en/product/sigma/g4423 (31/07/2022).
  • Sista Kameshwar, A.K., & Qin, W. (2018). Comparative study of genome-wide plant biomass-degrading CAZymes in white rot, brown rot and soft rot fungi. Mycology, 9(2), 93-105. https://doi.org/10.1080/21501203.2017.1419296
  • Kaminskyj, S.G., & Heath, M.C. (1983). Histological responses of infection structures and intercellular mycelium of Uromyces phaseoli var. typica and U. phaseoli var. vignae to the HNO2-MBTH-FeCl3 and the IKI-H2SO4 tests. Physiological Plant Pathology, 22(2), 173-IN4. https://doi.org/10.1016/S0048-4059(83)81006-6
  • Kar, B., Özköse, E., & Ekinci, M.S. (2021). The comparisons of fatty acid composition in some anaerobic gut fungi Neocallimastix, Orpinomyces, Piromyces, and Caecomyces. Anais da Academia Brasileira de Ciências, 93. https://doi.org/10.1590/0001-3765202120200896
  • Krastanova, I., Guarnaccia, C., Zahariev, S., Degrassi, G., & Lamba, D. (2005). Heterologous expression, purification, crystallization, X-ray analysis and phasing of the acetyl xylan esterase from Bacillus pumilus. Biochimica Et Biophysica Acta (Bba)-Proteins and Proteomics, 1748(2), 222-230. https://doi.org/10.1016/j.bbapap.2005.01.003
  • Kwon, M., Song, J., Park, H.S., Park, H., & Chang, J. (2016). Characterization of heterologously expressed acetyl xylan esterase1 isolated from the anaerobic rumen fungus Neocallimastix frontalis PMA02. Asian-Australasian Journal of Animal Sciences, 29(11), 1576-1584. https://doi.org/10.5713/ajas.16.0336
  • Lange, L., Barrett, K., Pilgaard, B., Gleason, F., & Tsang, A. (2019). Enzymes of early-diverging, zoosporic fungi. Applied Microbiology and Biotechnology, 103(17), 6885-6902. https://doi.org/10.1007/s00253-019-09983-w
  • Levasseur, A., Drula, E., Lombard, V., Coutinho, P. M., & Henrissat, B. (2013). Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnology for Biofuels, 6(1), 1-14. https://doi.org/10.1186/1754-6834-6-41
  • Li, Y., Meng, Z., Xu, Y., Shi, Q., Ma, Y., Aung, M., Cheng, Y., & Zhu, W. (2021). Interactions between anaerobic fungi and methanogens in the rumen and their biotechnological potential in biogas production from lignocellulosic materials. Microorganisms, 9(1), 190. https://doi.org/10.3390/microorganisms9010190
  • Liang, J., Nabi, M., Zhang, P., Zhang, G., Cai, Y., Wang, Q., Zhou, Z., & Ding, Y. (2020). Promising biological conversion of lignocellulosic biomass to renewable energy with rumen microorganisms: A comprehensive review. Renewable and Sustainable Energy Reviews, 134, 110335. https://doi.org/10.1016/j.rser.2020.110335
  • Lombard, V., Bernard, T., Rancurel, C., Brumer, H., Coutinho, P.M., & Henrissat, B. (2010). A hierarchical classification of polysaccharide lyases for glycogenomics. Biochemical Journal, 432(3), 437-444. https://doi.org/10.1042/BJ20101185
  • Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P.M., & Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 42(D1), D490-D495. https://doi.org/10.1093/nar/gkt1178
  • Lowe, S.E., Griffith, G.G., Milne, A., Theodorou, M.K., & Trinci, A.P. (1987). The life cycle and growth kinetics of an anaerobic rumen fungus. Microbiology, 133(7), 1815-1827. https://doi.org/10.1099/00221287-133-7-1815
  • Min, B., Park, J.H., Park, H., Shin, H.D., & Choi, I.G. (2017). Genome analysis of a zygomycete fungus Choanephora cucurbitarum elucidates necrotrophic features including bacterial genes related to plant colonization. Scientific Reports, 7(1), 1 11. https://doi.org/10.1038/srep40432
  • Mountfort, D.O., & Asher, R.A. (1989). Production of xylanase by the ruminal anaerobic fungus Neocallimastix frontalis. Applied and Environmental Microbiology, 55(4), 1016-1022. https://doi.org/10.1128/aem.55.4.1016-1022.1989
  • MycoCosm. (2022, July 31). https://mycocosm.jgi.doe.gov/neocallimastigomycetes/neocallimas tigomycetes.info.html
  • Novotná, Z., Procházka, J., Šimůnek, J., & Fliegerová, K. (2010). Xylanases of anaerobic fungus Anaeromyces mucronatus. Folia Microbiologica, 55(4), 363 367. https://doi.org/10.1007/s12223-010-0059-9 Orpin, C.G. (1975). Studies on the rumen flagellate Neocallimastix frontalis. Microbiology, 91(2), 249-262. https://doi.org/10.1099/00221287-91-2-249
  • Orpin, C.G. (1977). Invasion of plant tissue in the rumen by the flagellate Neocallimastix frontalis. Microbiology, 98(2), 423-430. https://doi.org/10.1099/00221287-98-2-423
  • Park, S., Lee, B., & Park, K. (2017). Extremophilic carbohydrate active enzymes (CAZymes). J Nutr Health Food Eng, 7(1), 1-9. https://doi.org/10.15406/jnhfe.2017.07.00230
  • Passarinho, A.T.P., Ventorim, R.Z., Maitan‐Alfenas, G.P., de Oliveira, E.B., & Guimarães, V.M. (2019). Engineered GH11 xylanases from Orpinomyces sp. PC‐2 improve techno‐functional properties of bread dough. Journal of the Science of Food and Agriculture, 99(2), 741-747. https://doi.org/10.1002/jsfa.9242
  • Pearse, I.S., Harris, D.J., Karban, R., & Sih, A. (2013). Predicting novel herbivore–plant interactions. Oikos, 122(11), 1554-1564. https://doi.org/10.1111/j.1600-0706.2013.00527.x
  • Pettersen, R.C. (1984). The chemical composition of wood. The chemistry of solid wood, 207, 57-126.
  • Qi, M., Wang, P., Selinger, L.B., Yanke, L.J., Forster, R.J., & McAllister, T.A. (2011). Isolation and characterization of a ferulic acid esterase (Fae1A) from the rumen fungus Anaeromyces mucronatus. Journal of Applied Microbiology, 110(5), 1341 1350. https://doi.org/10.1111/j.1365-2672.2011.04990.x
  • Razeq, F.M., Jurak, E., Stogios, P.J., Yan, R., Tenkanen, M., Kabel, M.A., Wang, W., & Master, E. R. (2018). A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans. Biotechnology for Biofuels, 11(1), 1-12. https://doi.org/10.1186/s13068-018-1074-3
  • Richardson, L.J., Rawlings, N.D., Salazar, G.A., Almeida, A., Haft, D.R., Ducq, G., Sutton, G.G., & Finn, R.D. (2019). Genome properties in 2019: a new companion database to InterPro for the inference of complete functional attributes. Nucleic Acids Research, 47(D1), D564-D572. https://doi.org/10.1093/nar/gky1013
  • Saye, L.M., Navaratna, T.A., Chong, J.P., O’Malley, M.A., Theodorou, M.K., & Reilly, M. (2021). The anaerobic fungi: Challenges and opportunities for industrial lignocellulosic biofuel production. Microorganisms, 9(4), 694. https://doi.org/10.3390/microorganisms9040694
  • Singh, Y.D., Mahanta, P., & Bora, U. (2017). Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renewable Energy, 103, 490 500. https://doi.org/10.1016/j.renene.2016.11.039
  • Solden, L.M., Naas, A.E., Roux, S., Daly, R.A., Collins, W.B., Nicora, C.D., Purvine, S.O., Hoyt, D.W., Schückel, J., Jørgensen, B., Willats, W., Spalinger, D.E., Firkins, J.L., Lipton, M.S., Sullivan, M.B., Pope, P.B., & Wrighton, K. C. (2018). Interspecies cross-feeding orchestrates carbon degradation in the rumen ecosystem. Nature Microbiology, 3(11), 1274-1284. https://doi.org/10.1038/s41564-018-0225-4
  • Solomon, K.V., Haitjema, C.H., Henske, J.K., Gilmore, S.P., Borges-Rivera, D., Lipzen, A., Brewer, H.M., Purvine, S.O., Wright, A.T., Theodorou, M.K., Grigoriev, I.V., Regev, A., Thompson, A.V., & O’Malley, M. A. (2016). Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science, 351(6278), 1192-1195. https://doi.org/10.1126/science.aad1431
  • Terry, S.A., Badhan, A., Wang, Y., Chaves, A.V., & McAllister, T.A. (2019). Fibre digestion by rumen microbiota—a review of recent metagenomic and metatranscriptomic studies. Canadian Journal of Animal Science, 99(4), 678-692. https://doi.org/10.1139/cjas-2019-0024
  • Trinci, A.P., Davies, D.R., Gull, K., Lawrence, M.I., Nielsen, B.B., Rickers, A., & Theodorou, M.K. (1994). Anaerobic fungi in herbivorous animals. Mycological Research, 98(2), 129-152. https://doi.org/10.1016/S0953-7562(09)80178-0
  • Tsapekos, P., Kougias, P.G., & Angelidaki, I. (2018). Mechanical pretreatment for increased biogas production from lignocellulosic biomass; predicting the methane yield from structural plant components. Waste Management, 78, 903 910. https://doi.org/10.1016/j.wasman.2018.07.017
  • Tseng, C.W., Yeh, D. J., Chuang, F.T., Lee, S.C., & Liu, J.R. (2015). Immobilization of Piromyces rhizinflata β-glucanase on poly (dimethylsiloxane) and Si wafer and prediction of optimum reaction for enzyme activity. Preparative Biochemistry and Biotechnology, 45(1), 42-55. https://doi.org/10.1080/10826068.2014.887579
  • Ventorim, R.Z., de Oliveira Mendes, T.A., Trevizano, L.M., dos Santos Camargos, A.M., & Guimarães, V.M. (2018). Impact of the removal of N-terminal non-structured amino acids on activity and stability of xylanases from Orpinomyces sp. PC-2. International Journal of Biological Macromolecules, 106, 312-319. https://doi.org/10.1016/j.ijbiomac.2017.08.015
  • Vu, H.P., Nguyen, L.N., Vu, M.T., Johir, M.A.H., McLaughlan, R., & Nghiem, L.D. (2020). A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks. Science of the Total Environment, 743, 140630. https://doi.org/10.1016/j.scitotenv.2020.140630
  • Wang, D., Zhao, C., Liu, S., Zhang, T., Yao, J., & Cao, Y. (2019). Effects of Piromyces sp. CN6 CGMCC 14449 on fermentation quality, nutrient composition and the in vitro degradation rate of whole crop maize silage. AMB Express, 9(1), 1-8. https://doi.org/10.1186/s13568-019-0846-x
  • Wen, S., Wu, G., & Wu, H. (2021). Biochemical characterization of a GH10 xylanase from the anaerobic rumen fungus Anaeromyces robustus and application in bread making. 3 Biotech, 11(9), 1-12. https://doi.org/10.1007/s13205-021-02956-9
  • Wilken, S.E., Monk, J.M., Leggieri, P.A., Lawson, C.E., Lankiewicz, T. S., Seppälä, S., Daum, C.G., Jenkins, J., Lipzen, A.M., Mondo, S.J., Barry, K.W., Grigoriev, I.V., Henske, J.K., Theodorou, M.K., Palsson, B.B., Petzold, L.R.,& O’Malley, M. A. (2021). Experimentally validated reconstruction and analysis of a genome-scale metabolic model of an anaerobic Neocallimastigomycota fungus. Msystems, 6(1), e00002 21. https://doi.org/10.1128/mSystems.00002-21
  • Wood, T.M., Wilson, C.A., McCrae, S.I., & Joblin, K.N. (1986). A highly active extracellular cellulase from the anaerobic rumen fungus Neocallimastix frontalis. FEMS Microbiology Letters, 34(1), 37-40. https://doi.org/10.1111/j.1574-6968.1986.tb01344.x
  • Yanuartono, P.H., Indarjulianto, S., Nururrozi, A., Raharjo, S., & Haribowo, N. (2019). Perlakuan biologis dengan memanfaatkan fungi untuk meningkatkan kualitas pakan ternak asal hasil samping pertanian. Jurnal Peternakan Sriwijaya, 8(2), 18-34.
  • Yip, V.L., & Withers, S.G. (2006). Breakdown of oligosaccharides by the process of elimination. Current Opinion in Chemical Biology, 10(2), 147 155. https://doi.org/10.1016/j.cbpa.2006.02.005
  • Youssef, N.H., Couger, M.B., Struchtemeyer, C.G., Liggenstoffer, A.S., Prade, R.A., Najar, F.Z., Atiyeh, H.K., Wilkins, M.R.,& Elshahed, M.S. (2013). The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Applied and Environmental Microbiology, 79(15), 4620-4634. https://doi.org/10.1128/AEM.00821-13
  • Yuan, H., Yang, X., Chen, P., Liu, Y., Tang, G., & Zhao, Y. (2018). Appraisal of an oligomerization behavior of unprotected carbohydrates induced by phosphorus reagent. Science China Chemistry, 61(2), 243-250. https://doi.org/10.1007/s11426-017-9165-4
  • Zhang, S., Hu, B., Wei, W., Xiong, Y., Zhu, W., Peng, F., Yu, Y., Zheng, Y., & Chen, P. (2016). De novo analysis of Wolfiporia cocos transcriptome to reveal the differentially expressed carbohydrate-active enzymes (CAZymes) genes during the early stage of sclerotial growth. Frontiers in Microbiology, 7, 83. https://doi.org/10.3389/fmicb.2016.00083
  • Zhang, Y., Yang, H., Yu, X., Kong, H., Chen, J., Luo, H., Bai, Y.,& Yao, B. (2019). Synergistic effect of acetyl xylan esterase from Talaromyces leycettanus JCM12802 and xylanase from Neocallimastix patriciarum achieved by introducing carbohydrate-binding module-1. AMB Express, 9(1), 1-12. https://doi.org/10.1186/s13568-019-0740-6
There are 87 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Halit Yücel This is me 0000-0002-6196-5303

Kübra Ekinci 0000-0002-0877-1358

Early Pub Date August 24, 2022
Publication Date September 26, 2022
Submission Date February 17, 2022
Published in Issue Year 2022 Volume: 9 Issue: 3

Cite

APA Yücel, H., & Ekinci, K. (2022). Carbohydrate active enzyme system in rumen fungi: a review. International Journal of Secondary Metabolite, 9(3), 320-334. https://doi.org/10.21448/ijsm.1075030
International Journal of Secondary Metabolite

e-ISSN: 2148-6905