Research Article
BibTex RIS Cite

Year 2025, Volume: 12 Issue: 4, 944 - 954
https://doi.org/10.21448/ijsm.1556665

Abstract

References

  • Ashkezary, E.Z., Vazifedoost, M., Nateghi, L., Didar, Z., & Moslemi, M. (2024). Characterization of encapsulated riboflavin in plasmolyzed and non-plasmolyzed Saccharomyces cerevisiae yeast cells. Journal of Food Measurement and Characterization, 18(6), 4323-4333. https://doi.org/10.1007/s11694-024-02496-9
  • Ayyaril, S.S., Shanableh, A., Bhattacharjee, S., Rawas-Qalaji, M., Cagliani, R., & Shabib, A.G. (2023). Recent progress in micro and nano-encapsulation techniques for environmental applications: A review. Results in Engineering, 18, 101094. https://doi.org/10.1016/j.rineng.2023.101094
  • Cerit, İ. (2025). Evaluation of the effects of plasmolysis, solvent, and ultrasonication on encapsulation of lycopene in Saccharomyces cerevisiae cells. Food and Bioprocess Technology, 18, 2507-2518. https://doi.org/10.1007/s11947-024-03611-w
  • Coronel-Aguilera, C.P., & San Martín-González, M.F. (2015). Encapsulation of spray dried β-carotene emulsion by fluidized bed coating technology. LWT-Food Science and Technology, 62(1), 187-193. https://doi.org/10.1016/j.lwt.2014.12.036
  • Çetin, N., & Sağlam, C. (2023). Effects of ultrasound pretreatment assisted drying methods on drying characteristics, physical and bioactive properties of windfall apples. Journal of the Science of Food and Agriculture, 103(2), 534-547. https://doi.org/10.1002/jsfa.12164
  • Dadkhodazade, E., Mohammadi, A., Shojaee-Aliabadi, S., Mortazavian, A.M., Mirmoghtadaie, L., & Hosseini, S.M. (2018). Yeast cell microcapsules as a novel carrier for cholecalciferol encapsulation: Development, characterization and release properties. Food Biophysics, 13, 404-411. https://doi.org/10.1007/s11483-018-9546-3
  • de Câmara, A.A., Dupont, S., Beney, L., Gervais, P., Rosenthal, A., Correia, R.T.P., & Pedrini, M.R.D.S. (2016). Fisetin yeast-based bio-capsules via osmoporation: Effects of process variables on the encapsulation efficiency and internalized fisetin content. Applied Microbiology and Biotechnology, 100, 5547-5558. https://doi.org/10.1007/s00253-016-7425-8
  • de Carvalho Alves, J.N., Oliveira, N.L., de Oliveira Meira, A.C.F., Pio, L.A.S., & de Resende, J.V. (2024). Valorization of the peel of pithaya’s fruit (Hylocereus polyrhizus) producing betalain-rich freeze-dried microparticles. Waste and Biomass Valorization, 15(2), 1097-1111. https://doi.org/10.1007/s12649-023-02234-0
  • de Lima Costa, I.H., dos Santos Hackbart, H.C., de Oliveira, G., Pires, J.B., Filho, P.J.S., Weber, F.H., ... & Dias, A.R.G. Pithaya (Hylocereus polyrhizus) extract rich in betanin encapsulated in electrospun sweet potato starch nanofibers. Journal of the Science of Food and Agriculture, 105(2), 878-889. https://doi.org/10.1002/jsfa.13880
  • Dong, L.M., Hang, H.T.T., Tran, N.H.N., & Thuy, D.T.K. (2020). Improvement of anthocyanin encapsulation efficiency into yeast cell by plasmolysis, ethanol, and anthocyanin concentration using response surface methodology. Microbiology and Biotechnology Letters, 48(3), 267-275. https://doi.org/10.4014/mbl.1912.12003
  • Fathordoobady, F., Jarzębski, M., Pratap-Singh, A., Guo, Y., & Abd-Manap, Y. (2021). Encapsulation of betacyanins from the peel of red dragon fruit (Hylocereus polyrhizus L.) in alginate microbeads. Food Hydrocolloids, 113, 106535. https://doi.org/10.1016/j.foodhyd.2020.106535
  • Fu, D.W., Fu, J.J., Li, J.J., Tang, Y., Shao, Z.W., Zhou, D.Y., & Song, L. (2022). Efficient encapsulation of curcumin into spent brewer’s yeast using a pH-driven method. Food Chemistry, 394, 133537. https://doi.org/10.1016/j.foodchem.2022.133537
  • Ghosh, S., Sarkar, T., Das, A., & Chakraborty, R. (2022). Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. LWT-Food Science and Technology, 153, 112527. https://doi.org/10.1016/j.lwt.2021.112527
  • Gong, Y., Hou, Z., Gao, Y., Xue, Y., Liu, X., & Liu, G. (2012). Optimization of extraction parameters of bioactive components from defatted marigold (Tagetes erecta L.) residue using response surface methodology. Food and Bioproducts Processing, 90(1), 9-16. https://doi.org/10.1016/j.fbp.2010.12.004
  • Günal-Köroğlu, D., Bilgin, A.B., Karabulut, G., Saricaoglu, B., & Capanoglu, E. (2024). Encapsulation of hydrophobic compounds in yeast cells: Methods, characterization, and applications. Exploration of Foods and Foodomics, 2(3), 252 274. https://doi.org/10.37349/eff.2024.00037
  • Gümüşay, Ö.A., Cerit, İ., & Demirkol, O. (2025). Utilization of yeast cells as alternative carriers in the microencapsulation of black chokeberry (Aronia melanocarpa) phenolic extract. Foods, 14(4), 625. https://doi.org/10.3390/foods14040625
  • He, L., Xu, H., Liu, X., He, W., Yuan, F., Hou, Z., & Gao, Y. (2011). Identification of phenolic compounds from pomegranate (Punica granatum L.) seed residues and investigation into their antioxidant capacities by HPLC–ABTS+ assay. Food Research International, 44(5), 1161-1167. https://doi.org/10.1016/j.foodres.2010.05.023 Khan, M.I. (2016). Stabilization of betalains: A review. Food Chemistry, 197, 1280-1285. https://doi.org/10.1016/j.foodchem.2015.11.043
  • Karaman, K. (2020). Characterization of Saccharomyces cerevisiae based microcarriers for encapsulation of black cumin seed oil: Stability of thymoquinone and bioactive properties. Food Chemistry, 313, 126129. https://doi.org/10.1016/j.foodchem.2019.126129
  • Karaman, K. (2021). Fabrication of gallic acid loaded yeast (Saccharomyces cerevisiae) microcapsules: Effect of plasmolysis treatment and solvent type on bioactivity and release kinetics. LWT Food Science and Technology, 148, 111640. https://doi.org/10.1016/j.lwt.2021.111640
  • Kurek, M.A., Majek, M., Onopiuk, A., Szpicer, A., Napiórkowska, A., & Samborska, K. (2023). Encapsulation of anthocyanins from chokeberry (Aronia melanocarpa) with plasmolyzed yeast cells of different species. Food and Bioproducts Processing, 137, 84-92. https://doi.org/10.1016/j.fbp.2022.11.001
  • Nguyen, T.T., Phan-Thi, H., Pham-Hoang, B.N., Ho, P.T., Tran, T.T.T., & Waché, Y. (2018). Encapsulation of Hibiscus sabdariffa L. anthocyanins as natural colours in yeast. Food Research International, 107, 275-280. https://doi.org/10.1016/j.foodres.2018.02.044
  • Paramera, E.I., Konteles, S.J., & Karathanos, V.T. (2011). Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chemistry, 125(3), 892 902. https://doi.org/10.1016/j.foodchem.2010.09.063
  • Qazi, H.J., Ye, A., Acevedo-Fani, A., & Singh, H. (2025). Delivery of encapsulated bioactive compounds within food matrices to the digestive tract: recent trends and future perspectives. Critical Reviews in Food Science and Nutrition, 65(15), 2921-2942. https://doi.org/10.1080/10408398.2024.2353366
  • Raj, G.B., & Dash, K.K. (2022). Microencapsulation of betacyanin from dragon fruit peel by complex coacervation: Physicochemical characteristics, thermal stability, and release profile of microcapsules. Food Bioscience, 49, 101882. https://doi.org/10.1016/j.fbio.2022.101882
  • Rajurkar, N.S., & Hande, S.M. (2011). Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian Journal of Pharmaceutical Sciences, 73(2), 146. doi: 10.4103/0250-474x.91574
  • Rotich, V., Wangila, P., & Cherutoi, J. (2022). Method validation and characterization of red pigment in Beta vulgaris peels and pomaces by HPLC-UV and UHPLC-MS/MS. Journal of Analytical Methods in Chemistry, 1, 2229500. https://doi.org/10.1155/2022/2229500
  • Shi, G., Rao, L., Yu, H., Xiang, H., Yang, H., & Ji, R. (2008). Stabilization and encapsulation of photosensitive resveratrol within yeast cell. International Journal of Pharmaceutics, 349(1-2), 83-93. https://doi.org/10.1016/j.ijpharm.2007.07.044
  • Utpott, M., Assis, R.Q., Pagno, C.H., Pereira Krigger, S., Rodrigues, E., de Oliveira Rios, A., & Hickmann Flôres, S. (2020). Evaluation of the use of industrial wastes on the encapsulation of betalains extracted from red pithaya pulp (Hylocereus polyrhizus) by spray drying: Powder stability and application. Food and Bioprocess Technology, 13, 1940-1953. https://doi.org/10.1007/s11947-020-02529-3
  • Vargas-Campos, L., Valle-Guadarrama, S., Martínez-Bustos, F., Salinas-Moreno, Y., Lobato-Calleros, C., & Calvo-López, A.D. (2018). Encapsulation and pigmenting potential of betalains of pithaya (Stenocereus pruinosus) fruit. Journal of Food Science and Technology, 55, 2436-2445. https://doi.org/10.1007/s13197-018-3161-7
  • Vieira, T.R.R., Lima, A.B., Ribeiro, C.M.C.M., de Medeiros, P.V.Q., Converti, A., dos Santos Lima, M., & Maciel, M.I.S. (2024). Red pithaya (Hylocereus polyrhizus) as a source of betalains and phenolic compounds: Ultrasound extraction, microencapsulation, and evaluation of stability. LWT Food Science and Technology, 196, 115755. https://doi.org/10.1016/j.lwt.2024.115755
  • Widianto, R., & Puangpraphant, S. (2024). Encapsulation of Betacyanin Extract from Red Dragon Fruit Peel with Maltodextrin and Inulin: Storage Stability and Simulated Gastrointestinal Digestion. Food Bioscience, 104566. https://doi.org/10.1016/j.fbio.2024.104566
  • Xue, L., Xin, X., Hui, Z., Junchi, Y., Chao, Y., & Caisheng, W. (2025). Preparation of novel bio-sunscreen using Nanocapsules encapsulating pitaya Peel flavonoids. Waste and Biomass Valorization, 16(2), 701-712. https://doi.org/10.1007/s12649-024-02692-0
  • Young, S., Dea, S., & Nitin, N. (2017). Vacuum facilitated infusion of bioactives into yeast microcarriers: Evaluation of a novel encapsulation approach. Food Research International, 100, 100-112. https://doi.org/10.1016/j.foodres.2017.07.067

Investigation of bioencapsulation possibilities of pithaya fruit extract with Saccharomyces cerevisiae yeast cells

Year 2025, Volume: 12 Issue: 4, 944 - 954
https://doi.org/10.21448/ijsm.1556665

Abstract

Bioencapsulation is a technique that has been frequently studied in recent years, with the use of different yeast cells in encapsulation. The low cost, environmentally friendly, and non-toxic nature of yeast cells has enabled them to find applications as encapsulation agents in addition to their well-known uses in the food and fermentation industry. In this study, lyophilized powder extracts from pithaya fruits were encapsulated with plasmolyzed and non-plasmolyzed Saccharomyces cerevisiae yeast cells and bioactive tests, SEM, and FTIR analyses were performed. In addition, different concentrations of ethanol: water solvent media were tested for encapsulation. DPPH inhibition values of the capsules were found between 5.08% and 25.53% and the highest value was found in the encapsulation method performed with non-plasmolyzed cells in 80:20% ethanol medium. Similarly, ABTS inhibition values were determined as 1.91-6.13μg Trolox eq/g, and the highest value was found in the encapsulation method performed in 80:20% ethanol medium with non-plasmolyzed cells. Shrinkage and deformations in plasmolyzed cells were observed in SEM images and clearer images of capsules were obtained in non-plasmolyzed yeast cells. In the FTIR analysis of the fruit extract, the sharp peak obtained at approximately 2950 cm-1 indicated the presence of galacturonic acid and this band intensity decreased in encapsulated samples. Our study showed that yeast cells can be used in encapsulation for the preservation of low-stability components such as betacyanin and betanin in pithaya and more successful results were obtained in non-plasmolyzed yeast cells.

References

  • Ashkezary, E.Z., Vazifedoost, M., Nateghi, L., Didar, Z., & Moslemi, M. (2024). Characterization of encapsulated riboflavin in plasmolyzed and non-plasmolyzed Saccharomyces cerevisiae yeast cells. Journal of Food Measurement and Characterization, 18(6), 4323-4333. https://doi.org/10.1007/s11694-024-02496-9
  • Ayyaril, S.S., Shanableh, A., Bhattacharjee, S., Rawas-Qalaji, M., Cagliani, R., & Shabib, A.G. (2023). Recent progress in micro and nano-encapsulation techniques for environmental applications: A review. Results in Engineering, 18, 101094. https://doi.org/10.1016/j.rineng.2023.101094
  • Cerit, İ. (2025). Evaluation of the effects of plasmolysis, solvent, and ultrasonication on encapsulation of lycopene in Saccharomyces cerevisiae cells. Food and Bioprocess Technology, 18, 2507-2518. https://doi.org/10.1007/s11947-024-03611-w
  • Coronel-Aguilera, C.P., & San Martín-González, M.F. (2015). Encapsulation of spray dried β-carotene emulsion by fluidized bed coating technology. LWT-Food Science and Technology, 62(1), 187-193. https://doi.org/10.1016/j.lwt.2014.12.036
  • Çetin, N., & Sağlam, C. (2023). Effects of ultrasound pretreatment assisted drying methods on drying characteristics, physical and bioactive properties of windfall apples. Journal of the Science of Food and Agriculture, 103(2), 534-547. https://doi.org/10.1002/jsfa.12164
  • Dadkhodazade, E., Mohammadi, A., Shojaee-Aliabadi, S., Mortazavian, A.M., Mirmoghtadaie, L., & Hosseini, S.M. (2018). Yeast cell microcapsules as a novel carrier for cholecalciferol encapsulation: Development, characterization and release properties. Food Biophysics, 13, 404-411. https://doi.org/10.1007/s11483-018-9546-3
  • de Câmara, A.A., Dupont, S., Beney, L., Gervais, P., Rosenthal, A., Correia, R.T.P., & Pedrini, M.R.D.S. (2016). Fisetin yeast-based bio-capsules via osmoporation: Effects of process variables on the encapsulation efficiency and internalized fisetin content. Applied Microbiology and Biotechnology, 100, 5547-5558. https://doi.org/10.1007/s00253-016-7425-8
  • de Carvalho Alves, J.N., Oliveira, N.L., de Oliveira Meira, A.C.F., Pio, L.A.S., & de Resende, J.V. (2024). Valorization of the peel of pithaya’s fruit (Hylocereus polyrhizus) producing betalain-rich freeze-dried microparticles. Waste and Biomass Valorization, 15(2), 1097-1111. https://doi.org/10.1007/s12649-023-02234-0
  • de Lima Costa, I.H., dos Santos Hackbart, H.C., de Oliveira, G., Pires, J.B., Filho, P.J.S., Weber, F.H., ... & Dias, A.R.G. Pithaya (Hylocereus polyrhizus) extract rich in betanin encapsulated in electrospun sweet potato starch nanofibers. Journal of the Science of Food and Agriculture, 105(2), 878-889. https://doi.org/10.1002/jsfa.13880
  • Dong, L.M., Hang, H.T.T., Tran, N.H.N., & Thuy, D.T.K. (2020). Improvement of anthocyanin encapsulation efficiency into yeast cell by plasmolysis, ethanol, and anthocyanin concentration using response surface methodology. Microbiology and Biotechnology Letters, 48(3), 267-275. https://doi.org/10.4014/mbl.1912.12003
  • Fathordoobady, F., Jarzębski, M., Pratap-Singh, A., Guo, Y., & Abd-Manap, Y. (2021). Encapsulation of betacyanins from the peel of red dragon fruit (Hylocereus polyrhizus L.) in alginate microbeads. Food Hydrocolloids, 113, 106535. https://doi.org/10.1016/j.foodhyd.2020.106535
  • Fu, D.W., Fu, J.J., Li, J.J., Tang, Y., Shao, Z.W., Zhou, D.Y., & Song, L. (2022). Efficient encapsulation of curcumin into spent brewer’s yeast using a pH-driven method. Food Chemistry, 394, 133537. https://doi.org/10.1016/j.foodchem.2022.133537
  • Ghosh, S., Sarkar, T., Das, A., & Chakraborty, R. (2022). Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. LWT-Food Science and Technology, 153, 112527. https://doi.org/10.1016/j.lwt.2021.112527
  • Gong, Y., Hou, Z., Gao, Y., Xue, Y., Liu, X., & Liu, G. (2012). Optimization of extraction parameters of bioactive components from defatted marigold (Tagetes erecta L.) residue using response surface methodology. Food and Bioproducts Processing, 90(1), 9-16. https://doi.org/10.1016/j.fbp.2010.12.004
  • Günal-Köroğlu, D., Bilgin, A.B., Karabulut, G., Saricaoglu, B., & Capanoglu, E. (2024). Encapsulation of hydrophobic compounds in yeast cells: Methods, characterization, and applications. Exploration of Foods and Foodomics, 2(3), 252 274. https://doi.org/10.37349/eff.2024.00037
  • Gümüşay, Ö.A., Cerit, İ., & Demirkol, O. (2025). Utilization of yeast cells as alternative carriers in the microencapsulation of black chokeberry (Aronia melanocarpa) phenolic extract. Foods, 14(4), 625. https://doi.org/10.3390/foods14040625
  • He, L., Xu, H., Liu, X., He, W., Yuan, F., Hou, Z., & Gao, Y. (2011). Identification of phenolic compounds from pomegranate (Punica granatum L.) seed residues and investigation into their antioxidant capacities by HPLC–ABTS+ assay. Food Research International, 44(5), 1161-1167. https://doi.org/10.1016/j.foodres.2010.05.023 Khan, M.I. (2016). Stabilization of betalains: A review. Food Chemistry, 197, 1280-1285. https://doi.org/10.1016/j.foodchem.2015.11.043
  • Karaman, K. (2020). Characterization of Saccharomyces cerevisiae based microcarriers for encapsulation of black cumin seed oil: Stability of thymoquinone and bioactive properties. Food Chemistry, 313, 126129. https://doi.org/10.1016/j.foodchem.2019.126129
  • Karaman, K. (2021). Fabrication of gallic acid loaded yeast (Saccharomyces cerevisiae) microcapsules: Effect of plasmolysis treatment and solvent type on bioactivity and release kinetics. LWT Food Science and Technology, 148, 111640. https://doi.org/10.1016/j.lwt.2021.111640
  • Kurek, M.A., Majek, M., Onopiuk, A., Szpicer, A., Napiórkowska, A., & Samborska, K. (2023). Encapsulation of anthocyanins from chokeberry (Aronia melanocarpa) with plasmolyzed yeast cells of different species. Food and Bioproducts Processing, 137, 84-92. https://doi.org/10.1016/j.fbp.2022.11.001
  • Nguyen, T.T., Phan-Thi, H., Pham-Hoang, B.N., Ho, P.T., Tran, T.T.T., & Waché, Y. (2018). Encapsulation of Hibiscus sabdariffa L. anthocyanins as natural colours in yeast. Food Research International, 107, 275-280. https://doi.org/10.1016/j.foodres.2018.02.044
  • Paramera, E.I., Konteles, S.J., & Karathanos, V.T. (2011). Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chemistry, 125(3), 892 902. https://doi.org/10.1016/j.foodchem.2010.09.063
  • Qazi, H.J., Ye, A., Acevedo-Fani, A., & Singh, H. (2025). Delivery of encapsulated bioactive compounds within food matrices to the digestive tract: recent trends and future perspectives. Critical Reviews in Food Science and Nutrition, 65(15), 2921-2942. https://doi.org/10.1080/10408398.2024.2353366
  • Raj, G.B., & Dash, K.K. (2022). Microencapsulation of betacyanin from dragon fruit peel by complex coacervation: Physicochemical characteristics, thermal stability, and release profile of microcapsules. Food Bioscience, 49, 101882. https://doi.org/10.1016/j.fbio.2022.101882
  • Rajurkar, N.S., & Hande, S.M. (2011). Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian Journal of Pharmaceutical Sciences, 73(2), 146. doi: 10.4103/0250-474x.91574
  • Rotich, V., Wangila, P., & Cherutoi, J. (2022). Method validation and characterization of red pigment in Beta vulgaris peels and pomaces by HPLC-UV and UHPLC-MS/MS. Journal of Analytical Methods in Chemistry, 1, 2229500. https://doi.org/10.1155/2022/2229500
  • Shi, G., Rao, L., Yu, H., Xiang, H., Yang, H., & Ji, R. (2008). Stabilization and encapsulation of photosensitive resveratrol within yeast cell. International Journal of Pharmaceutics, 349(1-2), 83-93. https://doi.org/10.1016/j.ijpharm.2007.07.044
  • Utpott, M., Assis, R.Q., Pagno, C.H., Pereira Krigger, S., Rodrigues, E., de Oliveira Rios, A., & Hickmann Flôres, S. (2020). Evaluation of the use of industrial wastes on the encapsulation of betalains extracted from red pithaya pulp (Hylocereus polyrhizus) by spray drying: Powder stability and application. Food and Bioprocess Technology, 13, 1940-1953. https://doi.org/10.1007/s11947-020-02529-3
  • Vargas-Campos, L., Valle-Guadarrama, S., Martínez-Bustos, F., Salinas-Moreno, Y., Lobato-Calleros, C., & Calvo-López, A.D. (2018). Encapsulation and pigmenting potential of betalains of pithaya (Stenocereus pruinosus) fruit. Journal of Food Science and Technology, 55, 2436-2445. https://doi.org/10.1007/s13197-018-3161-7
  • Vieira, T.R.R., Lima, A.B., Ribeiro, C.M.C.M., de Medeiros, P.V.Q., Converti, A., dos Santos Lima, M., & Maciel, M.I.S. (2024). Red pithaya (Hylocereus polyrhizus) as a source of betalains and phenolic compounds: Ultrasound extraction, microencapsulation, and evaluation of stability. LWT Food Science and Technology, 196, 115755. https://doi.org/10.1016/j.lwt.2024.115755
  • Widianto, R., & Puangpraphant, S. (2024). Encapsulation of Betacyanin Extract from Red Dragon Fruit Peel with Maltodextrin and Inulin: Storage Stability and Simulated Gastrointestinal Digestion. Food Bioscience, 104566. https://doi.org/10.1016/j.fbio.2024.104566
  • Xue, L., Xin, X., Hui, Z., Junchi, Y., Chao, Y., & Caisheng, W. (2025). Preparation of novel bio-sunscreen using Nanocapsules encapsulating pitaya Peel flavonoids. Waste and Biomass Valorization, 16(2), 701-712. https://doi.org/10.1007/s12649-024-02692-0
  • Young, S., Dea, S., & Nitin, N. (2017). Vacuum facilitated infusion of bioactives into yeast microcarriers: Evaluation of a novel encapsulation approach. Food Research International, 100, 100-112. https://doi.org/10.1016/j.foodres.2017.07.067
There are 33 citations in total.

Details

Primary Language English
Subjects Natural Products and Bioactive Compounds
Journal Section Articles
Authors

Kevser Karaman 0000-0003-0729-6185

Şeyda Nur Turkay 0000-0002-6605-0989

Early Pub Date September 1, 2025
Publication Date November 13, 2025
Submission Date September 27, 2024
Acceptance Date May 10, 2025
Published in Issue Year 2025 Volume: 12 Issue: 4

Cite

APA Karaman, K., & Turkay, Ş. N. (2025). Investigation of bioencapsulation possibilities of pithaya fruit extract with Saccharomyces cerevisiae yeast cells. International Journal of Secondary Metabolite, 12(4), 944-954. https://doi.org/10.21448/ijsm.1556665
International Journal of Secondary Metabolite

e-ISSN: 2148-6905