BibTex RIS Kaynak Göster

SOME IMPROVED CLASSIFICATION-BASED RIDGE PARAMETER OF HOERL AND KENNARD ESTIMATION TECHNIQUES

Yıl 2016, Cilt: 9 Sayı: 3, 93 - 106, 01.09.2016

Öz

In a linear regression model, it is often assumed that the explanatory variables are independent.This assumption is often violated and Ridge Regression estimator introduced by Hoerl and Kennard (1970)has been identified to be more efficient than ordinary least square (OLS) in handling it. However, it requiresa ridge parameter, K, of which many have been proposed. In this study, estimators based on Hoerl andKennard were classified into different forms and various types and some modifications were proposed toimprove it. Investigation were done by conducting 1000 Monte-Carlo experiments under five (5) levels ofmulticollinearity, three (3) levels of error variance and five levels of sample size. For the purpose of comparingthe performance of the improved ridge parameter with the existing ones, the number of times the MSE ofthe improved ridge parameter is less than the existing ones is counted over the levels of multicollinearity (5)and error variance (3). Also, a maximum of fifteen (15) counts is expected. Results show that the improvedridge parameters proposed in this study are better than the existing ones most especially with the quantity

Kaynakça

  • Alkhamisi, M., Khalaf, G. and Shukur, G. (2006). Some modifications for choosing ridge parameters,
  • Communications in Statistics- Theory and Methods, 35(11), 2005-2020.
  • Alkhamisi, M. and Shukur, G. (2007). A Monte Carlo study of recent ridge parameters, Commun. Statist.
  • Simulation and Computation, 36(3), 535-547. Dorugade, A. V. (2014). On comparison of some ridge parameters in Ridge Regression, Sri Lankan
  • Journal of Applied Statistics, 15(1), 31-46. Dorugade, A. V. and Kashid, D. N. (2010). Alternative method for choosing ridge parameter for regres- sion, International Journal of Applied Mathematical Sciences, 4(9), 447-456.
  • Gibbons, D. G. (1981). A simulation study of some ridge estimators,Journal of the American Statistical Association, 76, 131-139.
  • Gujarati, D.N.(1995). Basic Econometrics. McGraw-Hill, New York.
  • Hocking, R., Speed, F. M. and Lynn, M. J. (1976). A class of biased estimators in linear regression, Technometrics, 18(4), 425-437.
  • Hoerl, A.E. and Kennard, R.W. (1970). Ridge regression: biased estimation for non-orthogonal problems, Technometrics, 12, 55-67.
  • Khalaf, G. and Shukur, G. (2005). Choosing ridge parameters for regression problems, Communications in Statistics- Theory and Methods, 34, 1177-1182.
  • Kibria, B. M. G. (2003). Performance of some new ridge regression estimators, Communications in
  • Statistics-Simulation and Computation, 32, 419-435. Lawless, J. F. and Wang, P. (1976). A simulation study of ridge and other regression estimators, Com- munications in Statistics A, 5, 307-323.
  • Lukman, A. F. and Ayinde, K. (2015). Review and classification of the Ridge Parameter Estimation
  • Techniques, Hacettepe Journal of Mathematics and Statistics, Accepted for Publication. Mansson, K., Shukur, G. and Kibria, B. M. G. (2010). A simulation study of some ridge regression estimators under different distributional assumptions,Communications in Statistics-Simulations and Com- putations, 39(8), 1639-1670.
  • McDonald, G. C. and Galarneau, D. I. (1975). A Monte Carlo evaluation of some ridge-type estimators,
  • Journal of the American Statistical Association, 70, 407-416. Muniz, G. and Kibria, B. M. G. (2009). On some ridge regression estimators: An empirical compari- son,Communications in Statistics-Simulation and Computation, 38, 621-630.
  • Muniz, G., Kibria, B.M.G., Mansson, K., Shukur, G. (2012). On Developing Ridge Regression Param- eters: A Graphical Investigation, SORT. 36(2), 115-138.
  • Nordberg, L. (1982). A procedure for determination of a good ridge parameter in linear regression,
  • Communications in Statistics A11, 285-309. Saleh, A. K. Md. E. and Kibria, B. M. G. (1993). Performances of some new preliminary test ridge regression estimators and their properties, Communications in Statistics-Theory and Methods, 22, 2747
  • Wichern, D. and Churchill, G. (1978). A Comparison of Ridge Estimators, Technometrics, 20, 301–311.
Yıl 2016, Cilt: 9 Sayı: 3, 93 - 106, 01.09.2016

Öz

Kaynakça

  • Alkhamisi, M., Khalaf, G. and Shukur, G. (2006). Some modifications for choosing ridge parameters,
  • Communications in Statistics- Theory and Methods, 35(11), 2005-2020.
  • Alkhamisi, M. and Shukur, G. (2007). A Monte Carlo study of recent ridge parameters, Commun. Statist.
  • Simulation and Computation, 36(3), 535-547. Dorugade, A. V. (2014). On comparison of some ridge parameters in Ridge Regression, Sri Lankan
  • Journal of Applied Statistics, 15(1), 31-46. Dorugade, A. V. and Kashid, D. N. (2010). Alternative method for choosing ridge parameter for regres- sion, International Journal of Applied Mathematical Sciences, 4(9), 447-456.
  • Gibbons, D. G. (1981). A simulation study of some ridge estimators,Journal of the American Statistical Association, 76, 131-139.
  • Gujarati, D.N.(1995). Basic Econometrics. McGraw-Hill, New York.
  • Hocking, R., Speed, F. M. and Lynn, M. J. (1976). A class of biased estimators in linear regression, Technometrics, 18(4), 425-437.
  • Hoerl, A.E. and Kennard, R.W. (1970). Ridge regression: biased estimation for non-orthogonal problems, Technometrics, 12, 55-67.
  • Khalaf, G. and Shukur, G. (2005). Choosing ridge parameters for regression problems, Communications in Statistics- Theory and Methods, 34, 1177-1182.
  • Kibria, B. M. G. (2003). Performance of some new ridge regression estimators, Communications in
  • Statistics-Simulation and Computation, 32, 419-435. Lawless, J. F. and Wang, P. (1976). A simulation study of ridge and other regression estimators, Com- munications in Statistics A, 5, 307-323.
  • Lukman, A. F. and Ayinde, K. (2015). Review and classification of the Ridge Parameter Estimation
  • Techniques, Hacettepe Journal of Mathematics and Statistics, Accepted for Publication. Mansson, K., Shukur, G. and Kibria, B. M. G. (2010). A simulation study of some ridge regression estimators under different distributional assumptions,Communications in Statistics-Simulations and Com- putations, 39(8), 1639-1670.
  • McDonald, G. C. and Galarneau, D. I. (1975). A Monte Carlo evaluation of some ridge-type estimators,
  • Journal of the American Statistical Association, 70, 407-416. Muniz, G. and Kibria, B. M. G. (2009). On some ridge regression estimators: An empirical compari- son,Communications in Statistics-Simulation and Computation, 38, 621-630.
  • Muniz, G., Kibria, B.M.G., Mansson, K., Shukur, G. (2012). On Developing Ridge Regression Param- eters: A Graphical Investigation, SORT. 36(2), 115-138.
  • Nordberg, L. (1982). A procedure for determination of a good ridge parameter in linear regression,
  • Communications in Statistics A11, 285-309. Saleh, A. K. Md. E. and Kibria, B. M. G. (1993). Performances of some new preliminary test ridge regression estimators and their properties, Communications in Statistics-Theory and Methods, 22, 2747
  • Wichern, D. and Churchill, G. (1978). A Comparison of Ridge Estimators, Technometrics, 20, 301–311.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA99EY69PG
Bölüm Araştırma Makalesi
Yazarlar

Adewale F. Lukman Bu kişi benim

Kayode Ayinde. Bu kişi benim

Yayımlanma Tarihi 1 Eylül 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 9 Sayı: 3

Kaynak Göster

APA Lukman, A. F., & Ayinde., K. (2016). SOME IMPROVED CLASSIFICATION-BASED RIDGE PARAMETER OF HOERL AND KENNARD ESTIMATION TECHNIQUES. Istatistik Journal of The Turkish Statistical Association, 9(3), 93-106.
AMA Lukman AF, Ayinde. K. SOME IMPROVED CLASSIFICATION-BASED RIDGE PARAMETER OF HOERL AND KENNARD ESTIMATION TECHNIQUES. IJTSA. Eylül 2016;9(3):93-106.
Chicago Lukman, Adewale F., ve Kayode Ayinde. “SOME IMPROVED CLASSIFICATION-BASED RIDGE PARAMETER OF HOERL AND KENNARD ESTIMATION TECHNIQUES”. Istatistik Journal of The Turkish Statistical Association 9, sy. 3 (Eylül 2016): 93-106.
EndNote Lukman AF, Ayinde. K (01 Eylül 2016) SOME IMPROVED CLASSIFICATION-BASED RIDGE PARAMETER OF HOERL AND KENNARD ESTIMATION TECHNIQUES. Istatistik Journal of The Turkish Statistical Association 9 3 93–106.
IEEE A. F. Lukman ve K. Ayinde., “SOME IMPROVED CLASSIFICATION-BASED RIDGE PARAMETER OF HOERL AND KENNARD ESTIMATION TECHNIQUES”, IJTSA, c. 9, sy. 3, ss. 93–106, 2016.
ISNAD Lukman, Adewale F. - Ayinde., Kayode. “SOME IMPROVED CLASSIFICATION-BASED RIDGE PARAMETER OF HOERL AND KENNARD ESTIMATION TECHNIQUES”. Istatistik Journal of The Turkish Statistical Association 9/3 (Eylül 2016), 93-106.
JAMA Lukman AF, Ayinde. K. SOME IMPROVED CLASSIFICATION-BASED RIDGE PARAMETER OF HOERL AND KENNARD ESTIMATION TECHNIQUES. IJTSA. 2016;9:93–106.
MLA Lukman, Adewale F. ve Kayode Ayinde. “SOME IMPROVED CLASSIFICATION-BASED RIDGE PARAMETER OF HOERL AND KENNARD ESTIMATION TECHNIQUES”. Istatistik Journal of The Turkish Statistical Association, c. 9, sy. 3, 2016, ss. 93-106.
Vancouver Lukman AF, Ayinde. K. SOME IMPROVED CLASSIFICATION-BASED RIDGE PARAMETER OF HOERL AND KENNARD ESTIMATION TECHNIQUES. IJTSA. 2016;9(3):93-106.