Araştırma Makalesi
BibTex RIS Kaynak Göster

Exponentiated Gompertz Exponential (Egoe) Distribution: Derivation, Properties and Applications

Yıl 2021, Cilt: 13 Sayı: 1, 12 - 28, 02.01.2021

Öz

In this paper, a new probability distribution called Exponentiated Gompertz Exponential distribution was introduced which can help researchers to model different types of data sets. In proposed distribution we introduce a new shape parameter to Gompertz Exponential distribution, varied its tail weight such that it enhances its flexibility and performance. Furthermore, the maximum likelihood method was used in estimating the model’s parameters. Simulation method was used to investigate the behaviours of the parameters of the proposed distribution; the results showed that the mean square error and standard error for the chosen parameter values decrease as the sample size increases. The proposed distribution was tested on real life data, the results showed that EGoE performed better than the existing distribution in the literature and a strong competitor to other distributions of the same class. The results also showed that the distribution can be used as an alternative model in modelling lifetime processes.

Teşekkür

I want to appreciate the University of Lagos for their encouragement

Kaynakça

  • Oguntunde, P. E, Khaleel, M. A, Ahmed, M. T, Adejumo, A. O and Odetunmibi, O. A. (2017). A New Generalization of the Lomax Distribution with Increasing, Decreasing, and Constant Failure Rate. Journal of Modelling and Simulation in Engineering, https://doi.org/10.1155/2017/6043169.
  • Adewara J. A., Adeyeye J. S. and Thron, C. P. (2019). Properties and Applications of the Gompertz Distribution. International Journal of Mathematical Analysis and Optimization: Theory and Applications, 2019(1), 443 – 454.
  • Alizadeh, M., Cordeiro, G. M., Pinho, L. G. B and Ghosh, I. (2016). The Gompertz G family of distributions. Journal of Statistics Theory and Practice, 11(1), 179 – 207.
  • El – Gohary, A., Alshamrani, A., and Naif Al – Otaibi, A. (2013). The Generalized Gompertz distribution. Applied Mathematics Modelling , 37(1 – 2), 13 – 24.
  • Jafari A. A., Tahmasebi, S. and Alizadeh, M. (2014). The Beta Gompertz distribution. Revista Colombiana de Estadistica, 37(1), 141 – 158.
  • Pollard, J. H. and Valkovics, E. J. (1992). The Gompertz distribution and its applications. Genus, 40(3), 15 – 28.
  • Rama, S., Kamlesh, K. S., Ravi, S. & Tekie, A. L. (2017). A three – Parameter Lindley Distribution. American Journal of Mathematics and Statistics, 7(1), 15 – 26, DOI: 10.5923/j.ajms.20170701.
  • Khaleel, M. A., Oguntunde, P. E., Ahmed, M. T., Ibrahim, N. A. & Loh, Y. F. (2020). The Gompertz Flexible Weibull Distribution and its Applications. Malaysian Journal of Mathematical Sciences, 14(1), 169–190.
Yıl 2021, Cilt: 13 Sayı: 1, 12 - 28, 02.01.2021

Öz

Kaynakça

  • Oguntunde, P. E, Khaleel, M. A, Ahmed, M. T, Adejumo, A. O and Odetunmibi, O. A. (2017). A New Generalization of the Lomax Distribution with Increasing, Decreasing, and Constant Failure Rate. Journal of Modelling and Simulation in Engineering, https://doi.org/10.1155/2017/6043169.
  • Adewara J. A., Adeyeye J. S. and Thron, C. P. (2019). Properties and Applications of the Gompertz Distribution. International Journal of Mathematical Analysis and Optimization: Theory and Applications, 2019(1), 443 – 454.
  • Alizadeh, M., Cordeiro, G. M., Pinho, L. G. B and Ghosh, I. (2016). The Gompertz G family of distributions. Journal of Statistics Theory and Practice, 11(1), 179 – 207.
  • El – Gohary, A., Alshamrani, A., and Naif Al – Otaibi, A. (2013). The Generalized Gompertz distribution. Applied Mathematics Modelling , 37(1 – 2), 13 – 24.
  • Jafari A. A., Tahmasebi, S. and Alizadeh, M. (2014). The Beta Gompertz distribution. Revista Colombiana de Estadistica, 37(1), 141 – 158.
  • Pollard, J. H. and Valkovics, E. J. (1992). The Gompertz distribution and its applications. Genus, 40(3), 15 – 28.
  • Rama, S., Kamlesh, K. S., Ravi, S. & Tekie, A. L. (2017). A three – Parameter Lindley Distribution. American Journal of Mathematics and Statistics, 7(1), 15 – 26, DOI: 10.5923/j.ajms.20170701.
  • Khaleel, M. A., Oguntunde, P. E., Ahmed, M. T., Ibrahim, N. A. & Loh, Y. F. (2020). The Gompertz Flexible Weibull Distribution and its Applications. Malaysian Journal of Mathematical Sciences, 14(1), 169–190.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Adewara Ademola 0000-0002-7085-2992

John Adeyeye Bu kişi benim

Mundher Khaleel

Olubisi Aako Bu kişi benim

Yayımlanma Tarihi 2 Ocak 2021
Kabul Tarihi 24 Ağustos 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 13 Sayı: 1

Kaynak Göster

APA Ademola, A., Adeyeye, J., Khaleel, M., Aako, O. (2021). Exponentiated Gompertz Exponential (Egoe) Distribution: Derivation, Properties and Applications. Istatistik Journal of The Turkish Statistical Association, 13(1), 12-28.
AMA Ademola A, Adeyeye J, Khaleel M, Aako O. Exponentiated Gompertz Exponential (Egoe) Distribution: Derivation, Properties and Applications. IJTSA. Ocak 2021;13(1):12-28.
Chicago Ademola, Adewara, John Adeyeye, Mundher Khaleel, ve Olubisi Aako. “Exponentiated Gompertz Exponential (Egoe) Distribution: Derivation, Properties and Applications”. Istatistik Journal of The Turkish Statistical Association 13, sy. 1 (Ocak 2021): 12-28.
EndNote Ademola A, Adeyeye J, Khaleel M, Aako O (01 Ocak 2021) Exponentiated Gompertz Exponential (Egoe) Distribution: Derivation, Properties and Applications. Istatistik Journal of The Turkish Statistical Association 13 1 12–28.
IEEE A. Ademola, J. Adeyeye, M. Khaleel, ve O. Aako, “Exponentiated Gompertz Exponential (Egoe) Distribution: Derivation, Properties and Applications”, IJTSA, c. 13, sy. 1, ss. 12–28, 2021.
ISNAD Ademola, Adewara vd. “Exponentiated Gompertz Exponential (Egoe) Distribution: Derivation, Properties and Applications”. Istatistik Journal of The Turkish Statistical Association 13/1 (Ocak 2021), 12-28.
JAMA Ademola A, Adeyeye J, Khaleel M, Aako O. Exponentiated Gompertz Exponential (Egoe) Distribution: Derivation, Properties and Applications. IJTSA. 2021;13:12–28.
MLA Ademola, Adewara vd. “Exponentiated Gompertz Exponential (Egoe) Distribution: Derivation, Properties and Applications”. Istatistik Journal of The Turkish Statistical Association, c. 13, sy. 1, 2021, ss. 12-28.
Vancouver Ademola A, Adeyeye J, Khaleel M, Aako O. Exponentiated Gompertz Exponential (Egoe) Distribution: Derivation, Properties and Applications. IJTSA. 2021;13(1):12-28.