Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 3 Sayı: 1, 35 - 45, 02.06.2021

Öz

Kaynakça

  • [1] F.S. M.Al Sarari and S. Latha, On symmetrical functions with bounded boundary rotation, J. Math. Comput. Sci., 4(3)(2014), 494-502
  • [2] G.E. Andrews, R. Askey, R. Roy, Special functions, Cambridge University Press, Cambridge, 1999
  • [3] R. Balasubramanian, S. Ponnusamy and M. Vuorinen, On hypergeometric functions and function spaces, J. Comput. Appl. Math. 139(2)(2002), 299-322.

Weighted integral transforms involving convolution with some subclasses of analytic functions

Yıl 2021, Cilt: 3 Sayı: 1, 35 - 45, 02.06.2021

Öz

Let A represent the class of analytic functions f de…ned in the open unit disk
U := fz 2 C : jzj < 1g such that f(0) = f0(0) 􀀀 1 = 0 and let P represent
the well-known class of Carathéodory functions p such that p(0) = 1 and
Re p(z) > 0; z 2 U: A functions p analytic in U such that p(0) = 1 belongs
to the class Pk for k  2; if and only if
p (z) =
1
2
Z2
0
1 + ze􀀀i
1 􀀀 ze􀀀i d () (z 2 U) ;
where () : 0    2 is a function of bounded variation satis…es the
conditions
R2
0
d () = 2 and
R2
0 jd ()j  k: For some  2 R; & < 1; k  2
and
 0; let R
k(
; &) denote the class of functions f 2 A satisfying the
condition:
ei

(1 􀀀
)
f (z)
z
+
f0 (z) 􀀀 &

2 Pk (z 2 U) :
For f 2 R
k(
; &), we de…ne the integral transform=m (f) (z) =
R1
0
m(t) f(tz)
t dt;
where m is a non-negative real-valued weight function with
R1
0
m(t)dt = 1.
The main objective of this paper is to study conditions for invariance of
the integral transforms =m and other relevant properties in connection with
functions in the class R
k(
; &). Also by allowing parameters to vary, we may
encompass a large number of previously known results.
Key words and Phrases: Convolution; Gauss hypergeom

Kaynakça

  • [1] F.S. M.Al Sarari and S. Latha, On symmetrical functions with bounded boundary rotation, J. Math. Comput. Sci., 4(3)(2014), 494-502
  • [2] G.E. Andrews, R. Askey, R. Roy, Special functions, Cambridge University Press, Cambridge, 1999
  • [3] R. Balasubramanian, S. Ponnusamy and M. Vuorinen, On hypergeometric functions and function spaces, J. Comput. Appl. Math. 139(2)(2002), 299-322.
Toplam 3 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Syed Zakar Hussain Bukhari

Rehana Razzaq Bu kişi benim

Imtiaz Ahmed Bu kişi benim

Yayımlanma Tarihi 2 Haziran 2021
Kabul Tarihi 26 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 3 Sayı: 1

Kaynak Göster

APA Hussain Bukhari, S. Z., Razzaq, R., & Ahmed, I. (2021). Weighted integral transforms involving convolution with some subclasses of analytic functions. Ikonion Journal of Mathematics, 3(1), 35-45.
AMA Hussain Bukhari SZ, Razzaq R, Ahmed I. Weighted integral transforms involving convolution with some subclasses of analytic functions. ikjm. Haziran 2021;3(1):35-45.
Chicago Hussain Bukhari, Syed Zakar, Rehana Razzaq, ve Imtiaz Ahmed. “Weighted Integral Transforms Involving Convolution With Some Subclasses of Analytic Functions”. Ikonion Journal of Mathematics 3, sy. 1 (Haziran 2021): 35-45.
EndNote Hussain Bukhari SZ, Razzaq R, Ahmed I (01 Haziran 2021) Weighted integral transforms involving convolution with some subclasses of analytic functions. Ikonion Journal of Mathematics 3 1 35–45.
IEEE S. Z. Hussain Bukhari, R. Razzaq, ve I. Ahmed, “Weighted integral transforms involving convolution with some subclasses of analytic functions”, ikjm, c. 3, sy. 1, ss. 35–45, 2021.
ISNAD Hussain Bukhari, Syed Zakar vd. “Weighted Integral Transforms Involving Convolution With Some Subclasses of Analytic Functions”. Ikonion Journal of Mathematics 3/1 (Haziran 2021), 35-45.
JAMA Hussain Bukhari SZ, Razzaq R, Ahmed I. Weighted integral transforms involving convolution with some subclasses of analytic functions. ikjm. 2021;3:35–45.
MLA Hussain Bukhari, Syed Zakar vd. “Weighted Integral Transforms Involving Convolution With Some Subclasses of Analytic Functions”. Ikonion Journal of Mathematics, c. 3, sy. 1, 2021, ss. 35-45.
Vancouver Hussain Bukhari SZ, Razzaq R, Ahmed I. Weighted integral transforms involving convolution with some subclasses of analytic functions. ikjm. 2021;3(1):35-4.