The classical Gershgorin theorem on localization of the eigenvalues of finite matrices is extended to infinite Hille-Tamarkin matrices. Applications to finite order entire functions
are also discussed.
Da Fonseca, C. M. On the location of the eigenvalues of Jacobi matrices.
Appl. Math. Lett. 19 , no. 11, (2006) 1168-–1174.
Reference1\bibitem{Dewan}
Dewan, K.K., Govil, N.K. On the location of the zeros of analytic functions. Int. J. Math. Math. Sci.
13(1), (1990) 67-–72.
Djordjevi\'c, S. V. and Kant\`un-Montiel, G. Localization and computation in an approximation of eigenvalues. Filomat 29 (2015), no. 1, 75–-81.
Dyakonov, K.M. Polynomials and entire functions: zeros and geometry of the unit ball. Math. Res. Lett.
7(4), (2000) 393-–404.
Esp\`inola-Rocha, J. A. Factorization of
the scattering matrix and the location of the eigenvalues of the Manakov-Zakharov-Shabat system. Phys. Lett. A 372, no. 40, (2008) 6161-–6167.
Gil’, M.I. Invertibility and spectrum
of Hille-Tamarkin matrices, Mathematische Nachrichten
, 244, (2002), 1-11
Gil’, M.I.: Operator Functions and Localization of Spectra. Lectures Notes in Mathematics, vol. 1830, Springer, Berlin 2003.
Gil', M.I.
Localization and Perturbation of Zeros of Entire Functions,
Lecture Notes in Pure and Applied Mathematics, 258. CRC Press, Boca Raton, FL, 2010.
Grammont, L. and Largillier, A. Krylov method revisited with an application to the localization of eigenvalues.
Numer. Funct. Anal. Optim. 27 (2006), no. 5-6, 583-–618.
Ioakimidis, N.I. A unified Riemann–-Hilbert approach to
the analytical determination of zeros of sectionally
analytic functions. J. Math. Anal. Appl. 129(1), (1988) 134–-141
Kato, T.,
Perturbation Theory for Linear Operators, Berlin:
Springer-Verlag, 1980.
Kytmanov A.M. and Khodos O.V.,
On localization of zeros of an entire function of finite
order of growth,
Complex Anal. Oper. Theory 11 (2017) 393-–416.
Da Fonseca, C. M. On the location of the eigenvalues of Jacobi matrices.
Appl. Math. Lett. 19 , no. 11, (2006) 1168-–1174.
Reference1\bibitem{Dewan}
Dewan, K.K., Govil, N.K. On the location of the zeros of analytic functions. Int. J. Math. Math. Sci.
13(1), (1990) 67-–72.
Djordjevi\'c, S. V. and Kant\`un-Montiel, G. Localization and computation in an approximation of eigenvalues. Filomat 29 (2015), no. 1, 75–-81.
Dyakonov, K.M. Polynomials and entire functions: zeros and geometry of the unit ball. Math. Res. Lett.
7(4), (2000) 393-–404.
Esp\`inola-Rocha, J. A. Factorization of
the scattering matrix and the location of the eigenvalues of the Manakov-Zakharov-Shabat system. Phys. Lett. A 372, no. 40, (2008) 6161-–6167.
Gil’, M.I. Invertibility and spectrum
of Hille-Tamarkin matrices, Mathematische Nachrichten
, 244, (2002), 1-11
Gil’, M.I.: Operator Functions and Localization of Spectra. Lectures Notes in Mathematics, vol. 1830, Springer, Berlin 2003.
Gil', M.I.
Localization and Perturbation of Zeros of Entire Functions,
Lecture Notes in Pure and Applied Mathematics, 258. CRC Press, Boca Raton, FL, 2010.
Grammont, L. and Largillier, A. Krylov method revisited with an application to the localization of eigenvalues.
Numer. Funct. Anal. Optim. 27 (2006), no. 5-6, 583-–618.
Ioakimidis, N.I. A unified Riemann–-Hilbert approach to
the analytical determination of zeros of sectionally
analytic functions. J. Math. Anal. Appl. 129(1), (1988) 134–-141
Kato, T.,
Perturbation Theory for Linear Operators, Berlin:
Springer-Verlag, 1980.
Kytmanov A.M. and Khodos O.V.,
On localization of zeros of an entire function of finite
order of growth,
Complex Anal. Oper. Theory 11 (2017) 393-–416.
Gil’, M. (2022). The Gershgorin Type Theorem on Localization of the Eigenvalues of Infinite Matrices and Zeros of Entire Functions. Ikonion Journal of Mathematics, 4(1), 9-16. https://doi.org/10.54286/ikjm.1005765
AMA
Gil’ M. The Gershgorin Type Theorem on Localization of the Eigenvalues of Infinite Matrices and Zeros of Entire Functions. ikjm. September 2022;4(1):9-16. doi:10.54286/ikjm.1005765
Chicago
Gil’, Michael. “The Gershgorin Type Theorem on Localization of the Eigenvalues of Infinite Matrices and Zeros of Entire Functions”. Ikonion Journal of Mathematics 4, no. 1 (September 2022): 9-16. https://doi.org/10.54286/ikjm.1005765.
EndNote
Gil’ M (September 1, 2022) The Gershgorin Type Theorem on Localization of the Eigenvalues of Infinite Matrices and Zeros of Entire Functions. Ikonion Journal of Mathematics 4 1 9–16.
IEEE
M. Gil’, “The Gershgorin Type Theorem on Localization of the Eigenvalues of Infinite Matrices and Zeros of Entire Functions”, ikjm, vol. 4, no. 1, pp. 9–16, 2022, doi: 10.54286/ikjm.1005765.
ISNAD
Gil’, Michael. “The Gershgorin Type Theorem on Localization of the Eigenvalues of Infinite Matrices and Zeros of Entire Functions”. Ikonion Journal of Mathematics 4/1 (September 2022), 9-16. https://doi.org/10.54286/ikjm.1005765.
JAMA
Gil’ M. The Gershgorin Type Theorem on Localization of the Eigenvalues of Infinite Matrices and Zeros of Entire Functions. ikjm. 2022;4:9–16.
MLA
Gil’, Michael. “The Gershgorin Type Theorem on Localization of the Eigenvalues of Infinite Matrices and Zeros of Entire Functions”. Ikonion Journal of Mathematics, vol. 4, no. 1, 2022, pp. 9-16, doi:10.54286/ikjm.1005765.
Vancouver
Gil’ M. The Gershgorin Type Theorem on Localization of the Eigenvalues of Infinite Matrices and Zeros of Entire Functions. ikjm. 2022;4(1):9-16.