In this paper, we mainly investigate the qualitative and quantitative behavior of the solutions of a discrete system of difference equations
$$x_{n+1}=\frac{x_{n-1}}{y_{n-1}},\quad y_{n+1}=\frac{x_{n-1} }{ax_{n-1}+by_{n-1}},\quad n=0,1,\ldots, $$
where $a$, $b$ and the initial values $x_{-1},x_{0},y_{-1},y_{0}$ are non-zero real numbers. For $a\in \mathbb{R}_+-\{1\}$, we show any admissible solution $\{(x_n,y_n)\}_{n=-1}^\infty$ is either entirely located in a certain quadrant of the plane or there exists a natural number $N>0$ (we calculate its value) such that $\{(x_n,y_n)\}_{n=N}^\infty$ is located. Besides, some numerical simulations with graphs are given to emphasize the efficiency of our theoretical results in the article.
Discrete dynamical system forbidden set invariant set convergence
Birincil Dil | İngilizce |
---|---|
Konular | Uygulamalı Matematik (Diğer) |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 7 Ağustos 2024 |
Yayımlanma Tarihi | |
Gönderilme Tarihi | 24 Mart 2024 |
Kabul Tarihi | 15 Mayıs 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 6 Sayı: 2 |