Araştırma Makalesi
BibTex RIS Kaynak Göster

The effect of obesity on oxidative stress parameters in pregnant women

Yıl 2023, Cilt: 14 Sayı: 50, 164 - 168, 30.12.2023
https://doi.org/10.17944/interdiscip.1344660

Öz

Objective: In recent years, there has been a growing public concern about obesity, since it is known to reduce fertility in women and increase the duration of conception. Maternal obesity is also related to adverse pregnancy outcomes affected by placental malfunction. Therefore, in this study, we aimed to compare levels of oxidative stress between obese women and women of normal weight in the second trimester.

Method: We assessed lipid peroxidation by measuring the thiobarbituric acid reactive species (TBARS), as well as the antioxidant defense system by measuring the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) enzymes in 50 obese women (body mass index, BMI:36.60±4.95) and 51 women of normal weight (BMI:24.51±3.47).

Results: Increased lipid peroxidation and SOD enzyme activity were determined in obese pregnant women when compared to women of normal weight. Also, we found a significantly positive correlation (r:0.286, p:0.0435) between BMI and TBARS level as well as a significantly negative correlation (r: -0.421, p:0.002) between TBARS level and SOD enzyme activity. No significant difference was observed between the two groups in CAT and GPx enzymes activities.

Conclusion: Although increased SOD enzyme activity indicates that the antioxidant defense system is activated to deal with increased production of reactive oxygen species, maternal obesity is induced by oxidative stress via increased lipid peroxidation. Hence, maternal-obesity-induced oxidative stress in the second trimester should be followed up by clinicians since it may cause oxidative damage in the placenta during pregnancy.

Destekleyen Kurum

Cukurova University

Proje Numarası

TSA-2019-11291

Kaynakça

  • WHO European Regional Obesity Report 2022.
  • Wang G, Bartell TR, Wang X. Preconception and Prenatal Factors and Metabolic Risk. In: Halfon N, Forrest CB, Lerner RM, Faustman EM, editors. Handbook of Life Course Health Development. Cham (CH)2018. p. 47-59. https://doi.org/10.1007/978-3-319-47143-3_3
  • Farpour-Lambert NJ, Ells LJ, Martinez de Tejada B, Scott C. Obesity and Weight Gain in Pregnancy and Postpartum: An Evidence Review of Lifestyle Interventions to Inform Maternal and Child Health Policies. Front Endocrinol (Lausanne). 2018; 9:546. https://doi.org/10.3389/fendo.2018.00546
  • Martinez-Frias ML, Frias JP, Bermejo E, Rodriguez-Pinilla E, Prieto L, Frias JL. Pre-gestational maternal body mass index predicts an increased risk of congenital malformations in infants of mothers with gestational diabetes. Diabet Med. 2005;22(6):775-81. https://doi.org/10.1111/j.1464-5491.2005.01492.x
  • Garcia-Patterson A, Erdozain L, Ginovart G, Adelantado JM, Cubero JM, Gallo G, et al. In human gestational diabetes mellitus congenital malformations are related to pre-pregnancy body mass index and to severity of diabetes. Diabetologia. 2004;47(3):509-14. https://doi.org/10.1007/s00125-004-1337-3
  • Rasmussen SA, Chu SY, Kim SY, Schmid CH, Lau J. Maternal obesity, and risk of neural tube defects: a metanalysis. Am J Obstet Gynecol. 2008;198(6):611-9. https://doi.org/10.1016/j.ajog.2008.04.021
  • Paolini B, Maltese PE, Del Ciondolo I, Tavian D, Missaglia S, Ciuoli C, et al. Prevalence of mutations in LEP, LEPR, and MC4R genes in individuals with severe obesity. Genet Mol Res. 2016;15(3). https://doi.org/10.4238/gmr.15038718
  • Alcala M, Sanchez-Vera I, Sevillano J, Herrero L, Serra D, Ramos MP, et al. Vitamin E reduces adipose tissue fibrosis, inflammation, and oxidative stress and improves metabolic profile in obesity. Obesity (Silver Spring). 2015;23(8):1598-606. https://doi.org/10.1002/oby.21135
  • Alcala M, Gutierrez-Vega S, Castro E, Guzman-Gutierrez E, Ramos-Alvarez MP, Viana M. Antioxidants and Oxidative Stress: Focus in Obese Pregnancies. Front Physiol. 2018; 9:1569. https://doi.org/10.3389/fphys.2018.01569
  • Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Che Biol Interact. 2014; 224:164-75. https://doi.org/10.1016/j.cbi.2014.10.016
  • Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981-90. https://doi.org/10.1016/j.cellsig.2012.01.008
  • Juan-Reyes SS, Gόmez-Oliván LM, Islas-Flores H, Dublán-García O. Oxidative stress in pregnancy complicted by preeclampsia. Arch Biochem Biophys 2020; 681, 108255. https://doi.org/10.1016/j.abb.2020.108255
  • Tobola-Wrobel K, Pietryga M, Dydowicz P, Napierala M, Brazert J, Florek E. Association of oxidative stress on pregnancy. Oxid Med Cell. 2020; 6398520. https://doi.org/10.1155/2020/6398520
  • Devrim E, Tarhan I, Erguder IB, Durak I. Oxidant/antioxidant status of placenta, blood, and cord blood samples from pregnant women supplemented with iron. J Soc Gynecol Investig. 2006;13(7):502-5. https://doi.org/10.1016/j.jsgi.2006.07.004
  • Koc F, Atli G, Menziletoglu SY, Kose S. Antioxidant imbalance in the erythrocytes of Myotonic dystrophy Type 1 patients. Arch Biochem Biophys. 2020; 680:108230. https://doi.org/10.1016/j.abb.2019.108230
  • Vincent HK, Innes KE, Vincent KR. Oxidative stress, and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes Obes Metab. 2007;9(6):813-39. https://doi.org/10.1111/j.1463-1326.2007.00692.x
  • Wills ED, Wilkinson AE. Release of enzymes from lysosomes by irradiation and the relation of lipid peroxide formation to enzyme release. Biochemical Journal. 1966;99(3):657-66. https://doi.org/10.1042/bj0990657
  • McCord JM, Fridovich I. Superoxide Dismutase. Journal of Biological Chemistry. 1969;244(22):6049-55. https://doi.org/10.1016/S0021-9258(18)63504-5
  • Aebi H. Catalase in Bergmeyer Hans Ulrich, Methods of Enzymatic Analysis: Academic Press Incorporated, New York; 1974. 273-278. https://doi.org/10.1016/B978-0-12-091302-2.50032-3
  • Carlberg I, Mannervik B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem. 1975;250(14):5475-80. https://doi.org/10.1016/S0021-9258(19)41206-4
  • Wu F, Tian FJ, Lin Y. Oxidative Stress in Placenta: Health and Diseases. Biomed Res Int. 2015; 2015:293271. https://doi.org/10.1155/2015/293271
  • Alanis MC, Steadman EM. Maternal Obesity and Placental Oxidative Stress in the First Trimester. Journal of Obesity & Weight Loss Therapy. 2012;2(7). https://doi.org/10.4172/2165-7904.1000143
  • Keaney JF, Jr., Larson MG, Vasan RS, Wilson PW, Lipinska I, Corey D, et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol. 2003;23(3):434-9. https://doi.org/10.1161/01.ATV.0000058402.34138.11
  • Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. Journal of Clinical Investigation. 2004;114(12):1752-61. https://doi.org/10.1172/JCI21625
  • Matsuda M, Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract. 2013;7(5): e330-41. https://doi.org/10.1016/j.orcp.2013.05.004
  • Jauniaux E, Gulbis B, Burton GJ. Physiological implications of the materno-fetal oxygen gradient in human early pregnancy. Reprod Biomed Online. 2003;7(2):250-3. https://doi.org/10.1016/S1472-6483(10)61760-9
  • Malti N, Merzouk H, Merzouk SA, Loukidi B, Karaouzene N, Malti A, et al. Oxidative stress and maternal obesity: feto-placental unit interaction. Placenta. 2014;35(6):411-6. https://doi.org/10.1016/j.placenta.2014.03.010
  • Rakić G U-BA, Fabri Galambos I, Dobrijević D, Uram-Dubovski J, Drašković B. Relationship between maternal pregestational body mass index and neonatal oxidative stress. Progr Nutr. 2022;23(4): e2021319. https://doi.org/10.23751/pn.v23i4.12288
  • Dobrian AD, Davies MJ, Prewitt RL, Lauterio TJ. Development of hypertension in a rat model of diet-induced obesity. Hypertension. 2000;35(4):1009-15. https://doi.org/10.1161/01.HYP.35.4.1009
  • Amirkhizi F, Siassi, F., Minaie, S., Djalali, M., Rahimi, A., Chamari, M. Is obesity associated with increased plasma lipid peroxidation and oxidative stress in women? ARYA Atherosclerosis Journal. 2007;2(4):189-92.
Yıl 2023, Cilt: 14 Sayı: 50, 164 - 168, 30.12.2023
https://doi.org/10.17944/interdiscip.1344660

Öz

Proje Numarası

TSA-2019-11291

Kaynakça

  • WHO European Regional Obesity Report 2022.
  • Wang G, Bartell TR, Wang X. Preconception and Prenatal Factors and Metabolic Risk. In: Halfon N, Forrest CB, Lerner RM, Faustman EM, editors. Handbook of Life Course Health Development. Cham (CH)2018. p. 47-59. https://doi.org/10.1007/978-3-319-47143-3_3
  • Farpour-Lambert NJ, Ells LJ, Martinez de Tejada B, Scott C. Obesity and Weight Gain in Pregnancy and Postpartum: An Evidence Review of Lifestyle Interventions to Inform Maternal and Child Health Policies. Front Endocrinol (Lausanne). 2018; 9:546. https://doi.org/10.3389/fendo.2018.00546
  • Martinez-Frias ML, Frias JP, Bermejo E, Rodriguez-Pinilla E, Prieto L, Frias JL. Pre-gestational maternal body mass index predicts an increased risk of congenital malformations in infants of mothers with gestational diabetes. Diabet Med. 2005;22(6):775-81. https://doi.org/10.1111/j.1464-5491.2005.01492.x
  • Garcia-Patterson A, Erdozain L, Ginovart G, Adelantado JM, Cubero JM, Gallo G, et al. In human gestational diabetes mellitus congenital malformations are related to pre-pregnancy body mass index and to severity of diabetes. Diabetologia. 2004;47(3):509-14. https://doi.org/10.1007/s00125-004-1337-3
  • Rasmussen SA, Chu SY, Kim SY, Schmid CH, Lau J. Maternal obesity, and risk of neural tube defects: a metanalysis. Am J Obstet Gynecol. 2008;198(6):611-9. https://doi.org/10.1016/j.ajog.2008.04.021
  • Paolini B, Maltese PE, Del Ciondolo I, Tavian D, Missaglia S, Ciuoli C, et al. Prevalence of mutations in LEP, LEPR, and MC4R genes in individuals with severe obesity. Genet Mol Res. 2016;15(3). https://doi.org/10.4238/gmr.15038718
  • Alcala M, Sanchez-Vera I, Sevillano J, Herrero L, Serra D, Ramos MP, et al. Vitamin E reduces adipose tissue fibrosis, inflammation, and oxidative stress and improves metabolic profile in obesity. Obesity (Silver Spring). 2015;23(8):1598-606. https://doi.org/10.1002/oby.21135
  • Alcala M, Gutierrez-Vega S, Castro E, Guzman-Gutierrez E, Ramos-Alvarez MP, Viana M. Antioxidants and Oxidative Stress: Focus in Obese Pregnancies. Front Physiol. 2018; 9:1569. https://doi.org/10.3389/fphys.2018.01569
  • Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Che Biol Interact. 2014; 224:164-75. https://doi.org/10.1016/j.cbi.2014.10.016
  • Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981-90. https://doi.org/10.1016/j.cellsig.2012.01.008
  • Juan-Reyes SS, Gόmez-Oliván LM, Islas-Flores H, Dublán-García O. Oxidative stress in pregnancy complicted by preeclampsia. Arch Biochem Biophys 2020; 681, 108255. https://doi.org/10.1016/j.abb.2020.108255
  • Tobola-Wrobel K, Pietryga M, Dydowicz P, Napierala M, Brazert J, Florek E. Association of oxidative stress on pregnancy. Oxid Med Cell. 2020; 6398520. https://doi.org/10.1155/2020/6398520
  • Devrim E, Tarhan I, Erguder IB, Durak I. Oxidant/antioxidant status of placenta, blood, and cord blood samples from pregnant women supplemented with iron. J Soc Gynecol Investig. 2006;13(7):502-5. https://doi.org/10.1016/j.jsgi.2006.07.004
  • Koc F, Atli G, Menziletoglu SY, Kose S. Antioxidant imbalance in the erythrocytes of Myotonic dystrophy Type 1 patients. Arch Biochem Biophys. 2020; 680:108230. https://doi.org/10.1016/j.abb.2019.108230
  • Vincent HK, Innes KE, Vincent KR. Oxidative stress, and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes Obes Metab. 2007;9(6):813-39. https://doi.org/10.1111/j.1463-1326.2007.00692.x
  • Wills ED, Wilkinson AE. Release of enzymes from lysosomes by irradiation and the relation of lipid peroxide formation to enzyme release. Biochemical Journal. 1966;99(3):657-66. https://doi.org/10.1042/bj0990657
  • McCord JM, Fridovich I. Superoxide Dismutase. Journal of Biological Chemistry. 1969;244(22):6049-55. https://doi.org/10.1016/S0021-9258(18)63504-5
  • Aebi H. Catalase in Bergmeyer Hans Ulrich, Methods of Enzymatic Analysis: Academic Press Incorporated, New York; 1974. 273-278. https://doi.org/10.1016/B978-0-12-091302-2.50032-3
  • Carlberg I, Mannervik B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem. 1975;250(14):5475-80. https://doi.org/10.1016/S0021-9258(19)41206-4
  • Wu F, Tian FJ, Lin Y. Oxidative Stress in Placenta: Health and Diseases. Biomed Res Int. 2015; 2015:293271. https://doi.org/10.1155/2015/293271
  • Alanis MC, Steadman EM. Maternal Obesity and Placental Oxidative Stress in the First Trimester. Journal of Obesity & Weight Loss Therapy. 2012;2(7). https://doi.org/10.4172/2165-7904.1000143
  • Keaney JF, Jr., Larson MG, Vasan RS, Wilson PW, Lipinska I, Corey D, et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol. 2003;23(3):434-9. https://doi.org/10.1161/01.ATV.0000058402.34138.11
  • Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. Journal of Clinical Investigation. 2004;114(12):1752-61. https://doi.org/10.1172/JCI21625
  • Matsuda M, Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract. 2013;7(5): e330-41. https://doi.org/10.1016/j.orcp.2013.05.004
  • Jauniaux E, Gulbis B, Burton GJ. Physiological implications of the materno-fetal oxygen gradient in human early pregnancy. Reprod Biomed Online. 2003;7(2):250-3. https://doi.org/10.1016/S1472-6483(10)61760-9
  • Malti N, Merzouk H, Merzouk SA, Loukidi B, Karaouzene N, Malti A, et al. Oxidative stress and maternal obesity: feto-placental unit interaction. Placenta. 2014;35(6):411-6. https://doi.org/10.1016/j.placenta.2014.03.010
  • Rakić G U-BA, Fabri Galambos I, Dobrijević D, Uram-Dubovski J, Drašković B. Relationship between maternal pregestational body mass index and neonatal oxidative stress. Progr Nutr. 2022;23(4): e2021319. https://doi.org/10.23751/pn.v23i4.12288
  • Dobrian AD, Davies MJ, Prewitt RL, Lauterio TJ. Development of hypertension in a rat model of diet-induced obesity. Hypertension. 2000;35(4):1009-15. https://doi.org/10.1161/01.HYP.35.4.1009
  • Amirkhizi F, Siassi, F., Minaie, S., Djalali, M., Rahimi, A., Chamari, M. Is obesity associated with increased plasma lipid peroxidation and oxidative stress in women? ARYA Atherosclerosis Journal. 2007;2(4):189-92.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kadın Hastalıkları ve Doğum, Halk Sağlığı (Diğer)
Bölüm Research Articles
Yazarlar

Derya Kocamaz 0000-0002-0705-4672

Gülizar Atlı 0000-0002-0530-3751

Şule Menziletoğlu Yıldız 0000-0002-5144-3843

Sefa Arlıer 0000-0002-0019-8403

Birol Güvenç 0000-0001-7641-5673

Proje Numarası TSA-2019-11291
Yayımlanma Tarihi 30 Aralık 2023
Gönderilme Tarihi 17 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 14 Sayı: 50

Kaynak Göster

Vancouver Kocamaz D, Atlı G, Menziletoğlu Yıldız Ş, Arlıer S, Güvenç B. The effect of obesity on oxidative stress parameters in pregnant women. Interdiscip Med J. 2023;14(50):164-8.