Year 2025,
Volume: 16 Issue: 55, 92 - 99, 18.08.2025
Gökhan Yıldız
,
Soner Karabulut
,
Tuba Dinçer
,
Bayram Toraman
,
Ersan Kalay
References
-
Bigenzahn JW, Collu GM, Kartnig F, Pieraks M, Vladimer GI, Heinz LX, et al. LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 2018;362(6419):1171-7. https://doi.org/10.1126/science.aap8210
-
Steklov M, Pandolfi S, Baietti MF, Batiuk A, Carai P, Najm P, et al. Mutations in LZTR1 drive human disease by dysregulating RAS ubiquitination. Science. 2018;362(6419):1177-82. https://doi.org/10.1126/science.aap7607
-
Castel P, Cheng A, Cuevas-Navarro A, Everman DB, Papageorge AG, Simanshu DK, et al. RIT1 oncoproteins escape LZTR1-mediated proteolysis. Science. 2019;363(6432):1226-30. https://doi.org/10.1126/science.aav1444
-
Abe T, Umeki I, Kanno SI, Inoue SI, Niihori T, Aoki Y. LZTR1 facilitates polyubiquitination and degradation of RAS-GTPases. Cell Death Differ. 2020;27(3):1023-35. https://doi.org/10.1038/s41418-019-0395-5
-
Ye G, Wang J, Xia J, Zhu C, Gu C, Li X, et al. Low protein expression of LZTR1 in hepatocellular carcinoma triggers tumorigenesis via activating the RAS/RAF/MEK/ERK signaling. Heliyon. 2024;10(12):e32855.
-
Damnernsawad A, Bottomly D, Kurtz SE, Eide CA, McWeeney SK, Tyner JW, et al. Genome-wide CRISPR screen identifies regulators of MAPK and MTOR pathways mediating sorafenib resistance in acute myeloid leukemia. Haematologica. 2022;107(1):77-85. https://doi.org/10.3324/haematol.2020.257964
-
Motta M, Fidan M, Bellacchio E, Pantaleoni F, Schneider-Heieck K, Coppola S, et al. Dominant Noonan syndrome-causing LZTR1 mutations specifically affect the Kelch domain substrate-recognition surface and enhance RAS-MAPK signaling. Hum Mol Genet. 2019;28(6):1007-22. https://doi.org/10.1093/hmg/ddy412
-
Nacak TG, Leptien K, Fellner D, Augustin HG, Kroll J. The BTB-kelch protein LZTR-1 is a novel Golgi protein that is degraded upon induction of apoptosis. J Biol Chem. 2006;281(8):5065-71. https://doi.org/10.1074/jbc.M509073200
-
Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, et al. Architecture of the human interactome defines protein communities and disease networks. Nature. 2017;545(7655):505-9. https://doi.org/10.1038/nature22366
-
Huttlin EL, Bruckner RJ, Navarrete-Perea J, Cannon JR, Baltier K, Gebreab F, et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell. 2021;184(11):3022-40 e28. https://doi.org/10.1016/j.cell.2021.04.011
-
Spitzer J, Landthaler M, Tuschl T. Rapid creation of stable mammalian cell lines for regulated expression of proteins using the Gateway(R) recombination cloning technology and Flp-In T-REx(R) lines. Methods Enzymol. 2013;529:99-124. https://doi.org/10.1016/B978-0-12-418687-3.00008-2
-
Kingston RE, Chen CA, Okayama H. Calcium phosphate transfection. Curr Protoc Cell Biol. 2003;Chapter 20:Unit 20 3. https://doi.org/10.1002/0471143030.cb2003s19
-
Han S, Cui Y, Helbing DL. Inactivation of Horseradish Peroxidase by Acid for Sequential Chemiluminescent Western Blot. Biotechnol J. 2020;15(3):e1900397. https://doi.org/10.1002/biot.201900397
-
Bajia D, Bottani E, Derwich K. Effects of Noonan Syndrome-Germline Mutations on Mitochondria and Energy Metabolism. Cells. 2022;11(19). https://doi.org/10.3390/cells11193099
-
King AJ, Sun H, Diaz B, Barnard D, Miao W, Bagrodia S, et al. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature. 1998;396(6707):180-3. https://doi.org/10.1038/24184
-
Dhillon AS, Meikle S, Yazici Z, Eulitz M, Kolch W. Regulation of Raf-1 activation and signalling by dephosphorylation. EMBO J. 2002;21(1-2):64-71. https://doi.org/10.1093/emboj/21.1.64
-
Frattini V, Trifonov V, Chan JM, Castano A, Lia M, Abate F, et al. The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet. 2013;45(10):1141-9. https://doi.org/10.1038/ng.2734
-
Kehrer-Sawatzki H, Farschtschi S, Mautner VF, Cooper DN. The molecular pathogenesis of schwannomatosis, a paradigm for the co-involvement of multiple tumour suppressor genes in tumorigenesis. Hum Genet. 2017;136(2):129-48. https://doi.org/10.1007/s00439-016-1753-8
-
Cancer Genome Atlas Research Network. Electronic address web, Cancer Genome Atlas Research N. Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell. 2017;169(7):1327-41 e23. https://doi.org/10.1016/j.cell.2017.05.046
-
Johnston JJ, van der Smagt JJ, Rosenfeld JA, Pagnamenta AT, Alswaid A, Baker EH, et al. Autosomal recessive Noonan syndrome associated with biallelic LZTR1 variants. Genet Med. 2018;20(10):1175-85. https://doi.org/10.1038/gim.2017.249
-
Chen S, Vedula RS, Cuevas-Navarro A, Lu B, Hogg SJ, Wang E, et al. Impaired Proteolysis of Noncanonical RAS Proteins Drives Clonal Hematopoietic Transformation. Cancer Discov. 2022;12(10):2434-53. https://doi.org/10.1158/2159-8290.CD-21-1631
-
Abe T, Kanno SI, Niihori T, Terao M, Takada S, Aoki Y. LZTR1 deficiency exerts high metastatic potential by enhancing sensitivity to EMT induction and controlling KLHL12-mediated collagen secretion. Cell Death Dis. 2023;14(8):556. https://doi.org/10.1038/s41419-023-06072-9
-
Cagnol S, Chambard JC. ERK and cell death: mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence. FEBS J. 2010;277(1):2-21. https://doi.org/10.1111/j.1742-4658.2009.07366.x
-
Chen J, Fujii K, Zhang L, Roberts T, Fu H. Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci U S A. 2001;98(14):7783-8. https://doi.org/10.1073/pnas.141224398
-
Umeki I, Niihori T, Abe T, Kanno SI, Okamoto N, Mizuno S, et al. Delineation of LZTR1 mutation-positive patients with Noonan syndrome and identification of LZTR1 binding to RAF1-PPP1CB complexes. Hum Genet. 2019;138(1):21-35. https://doi.org/10.1007/s00439-018-1951-7
-
Zimmermann S, Moelling K. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science. 1999;286(5445):1741-4. https://doi.org/10.1126/science.286.5445.1741
-
Bonsor DA, Simanshu DK. RAS and SHOC2 Roles in RAF Activation and Therapeutic Considerations. Annu Rev Cancer Biol. 2024;8:97-113. https://doi.org/10.1146/annurev-cancerbio-062822-030450
Wright EB, Lannigan DA. Therapeutic targeting of p90 ribosomal S6 kinase. Front Cell Dev Biol. 2023;11:1297292. https://doi.org/10.3389/fcell.2023.1297292
-
Koutsougianni F, Alexopoulou D, Uvez A, Lamprianidou A, Sereti E, Tsimplouli C, et al. P90 ribosomal S6 kinases: A bona fide target for novel targeted anticancer therapies? Biochem Pharmacol. 2023;210:115488. https://doi.org/10.1016/j.bcp.2023.115488
-
Katayama K, Nishihata A. RSK Inhibition Induces Apoptosis by Downregulating Protein Synthesis in a Variety of Acute Myeloid Leukemia Cell Lines. Biol Pharm Bull. 2021;44(12):1843-50. https://doi.org/10.1248/bpb.b21-00531
-
Tan Y, Ruan H, Demeter MR, Comb MJ. p90(RSK) blocks bad-mediated cell death via a protein kinase C-dependent pathway. J Biol Chem. 1999;274(49):34859-67. https://doi.org/10.1074/jbc.274.49.34859
-
Fernandez-Medarde A, Santos E. Ras in cancer and developmental diseases. Genes Cancer. 2011;2(3):344-58. https://doi.org/10.1177/1947601911411084
-
Neophytou CM, Trougakos IP, Erin N, Papageorgis P. Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance. Cancers (Basel). 2021;13(17). https://doi.org/10.3390/cancers13174363
LZTR1 interacts with AIFM3 protein and negatively regulates Ras signaling by downregulating SHOC2 and phosphorylated p90RSK protein levels in apoptosis
Year 2025,
Volume: 16 Issue: 55, 92 - 99, 18.08.2025
Gökhan Yıldız
,
Soner Karabulut
,
Tuba Dinçer
,
Bayram Toraman
,
Ersan Kalay
Abstract
Objective: Leucine zipper like post translational regulator 1 (LZTR1) is a negative regulator of the canonical Ras pathway. LZTR1 mutations have been associated with several congenital diseases and cancer types. The identification of novel interaction partners of LZTR1 and an understanding of LZTR1’s roles in various cellular mechanisms are crucial for a better characterization of the molecular mechanisms underlying LZTR1-associated diseases. In this study, the interactions between LZTR1 and apoptosis inducing factor mitochondria associated 3 (AIFM3) protein, as well as their functional impacts on Ras signaling, were investigated in apoptosis-induced HEK293 cells.
Method: FLAG-LZTR1 and Myc-AIFM3 expression plasmids were cloned for analyses. While stably FLAG-LZTR1-expressing HEK293 Flp-In cells were prepared, Myc-AIFM3 plasmids were transiently transfected. Interactions of LZTR1 and AIFM3 proteins were analyzed with immunofluorescence microscopy. Apoptosis was induced by treating cells with 0.4 mM hydrogen peroxide (H2O2) for 10 hours. Protein levels were detected with western blotting.
Results: Interactions between LZTR1 and AIFM3 proteins were determined in the cytoplasm of HEK293 cells. Cleaved PARP1 proteins were detected in H2O2-treated cells, indicating that apoptosis was induced via H2O2 treatments. Elevated phosphorylated MEK1/2 and ERK1/2 protein levels were detected in apoptosis-induced cells, indicating that neither LZTR1 nor AIFM3 downregulated the Ras signaling in H2O2-induced apoptosis. Conversely, lower levels of SHOC2 and phosphorylated p90RSK levels were observed in the cells expressing LZTR1.
Conclusion: During H2O2-induced apoptosis, the Ras signaling is activated, and LZTR1 downregulates this pathway not by inhibiting phosphorylated MEK1/2 and ERK1/2 levels but by diminishing the levels of SHOC2 and phosphorylated p90RSK in HEK293 cells.
References
-
Bigenzahn JW, Collu GM, Kartnig F, Pieraks M, Vladimer GI, Heinz LX, et al. LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 2018;362(6419):1171-7. https://doi.org/10.1126/science.aap8210
-
Steklov M, Pandolfi S, Baietti MF, Batiuk A, Carai P, Najm P, et al. Mutations in LZTR1 drive human disease by dysregulating RAS ubiquitination. Science. 2018;362(6419):1177-82. https://doi.org/10.1126/science.aap7607
-
Castel P, Cheng A, Cuevas-Navarro A, Everman DB, Papageorge AG, Simanshu DK, et al. RIT1 oncoproteins escape LZTR1-mediated proteolysis. Science. 2019;363(6432):1226-30. https://doi.org/10.1126/science.aav1444
-
Abe T, Umeki I, Kanno SI, Inoue SI, Niihori T, Aoki Y. LZTR1 facilitates polyubiquitination and degradation of RAS-GTPases. Cell Death Differ. 2020;27(3):1023-35. https://doi.org/10.1038/s41418-019-0395-5
-
Ye G, Wang J, Xia J, Zhu C, Gu C, Li X, et al. Low protein expression of LZTR1 in hepatocellular carcinoma triggers tumorigenesis via activating the RAS/RAF/MEK/ERK signaling. Heliyon. 2024;10(12):e32855.
-
Damnernsawad A, Bottomly D, Kurtz SE, Eide CA, McWeeney SK, Tyner JW, et al. Genome-wide CRISPR screen identifies regulators of MAPK and MTOR pathways mediating sorafenib resistance in acute myeloid leukemia. Haematologica. 2022;107(1):77-85. https://doi.org/10.3324/haematol.2020.257964
-
Motta M, Fidan M, Bellacchio E, Pantaleoni F, Schneider-Heieck K, Coppola S, et al. Dominant Noonan syndrome-causing LZTR1 mutations specifically affect the Kelch domain substrate-recognition surface and enhance RAS-MAPK signaling. Hum Mol Genet. 2019;28(6):1007-22. https://doi.org/10.1093/hmg/ddy412
-
Nacak TG, Leptien K, Fellner D, Augustin HG, Kroll J. The BTB-kelch protein LZTR-1 is a novel Golgi protein that is degraded upon induction of apoptosis. J Biol Chem. 2006;281(8):5065-71. https://doi.org/10.1074/jbc.M509073200
-
Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, et al. Architecture of the human interactome defines protein communities and disease networks. Nature. 2017;545(7655):505-9. https://doi.org/10.1038/nature22366
-
Huttlin EL, Bruckner RJ, Navarrete-Perea J, Cannon JR, Baltier K, Gebreab F, et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell. 2021;184(11):3022-40 e28. https://doi.org/10.1016/j.cell.2021.04.011
-
Spitzer J, Landthaler M, Tuschl T. Rapid creation of stable mammalian cell lines for regulated expression of proteins using the Gateway(R) recombination cloning technology and Flp-In T-REx(R) lines. Methods Enzymol. 2013;529:99-124. https://doi.org/10.1016/B978-0-12-418687-3.00008-2
-
Kingston RE, Chen CA, Okayama H. Calcium phosphate transfection. Curr Protoc Cell Biol. 2003;Chapter 20:Unit 20 3. https://doi.org/10.1002/0471143030.cb2003s19
-
Han S, Cui Y, Helbing DL. Inactivation of Horseradish Peroxidase by Acid for Sequential Chemiluminescent Western Blot. Biotechnol J. 2020;15(3):e1900397. https://doi.org/10.1002/biot.201900397
-
Bajia D, Bottani E, Derwich K. Effects of Noonan Syndrome-Germline Mutations on Mitochondria and Energy Metabolism. Cells. 2022;11(19). https://doi.org/10.3390/cells11193099
-
King AJ, Sun H, Diaz B, Barnard D, Miao W, Bagrodia S, et al. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature. 1998;396(6707):180-3. https://doi.org/10.1038/24184
-
Dhillon AS, Meikle S, Yazici Z, Eulitz M, Kolch W. Regulation of Raf-1 activation and signalling by dephosphorylation. EMBO J. 2002;21(1-2):64-71. https://doi.org/10.1093/emboj/21.1.64
-
Frattini V, Trifonov V, Chan JM, Castano A, Lia M, Abate F, et al. The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet. 2013;45(10):1141-9. https://doi.org/10.1038/ng.2734
-
Kehrer-Sawatzki H, Farschtschi S, Mautner VF, Cooper DN. The molecular pathogenesis of schwannomatosis, a paradigm for the co-involvement of multiple tumour suppressor genes in tumorigenesis. Hum Genet. 2017;136(2):129-48. https://doi.org/10.1007/s00439-016-1753-8
-
Cancer Genome Atlas Research Network. Electronic address web, Cancer Genome Atlas Research N. Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell. 2017;169(7):1327-41 e23. https://doi.org/10.1016/j.cell.2017.05.046
-
Johnston JJ, van der Smagt JJ, Rosenfeld JA, Pagnamenta AT, Alswaid A, Baker EH, et al. Autosomal recessive Noonan syndrome associated with biallelic LZTR1 variants. Genet Med. 2018;20(10):1175-85. https://doi.org/10.1038/gim.2017.249
-
Chen S, Vedula RS, Cuevas-Navarro A, Lu B, Hogg SJ, Wang E, et al. Impaired Proteolysis of Noncanonical RAS Proteins Drives Clonal Hematopoietic Transformation. Cancer Discov. 2022;12(10):2434-53. https://doi.org/10.1158/2159-8290.CD-21-1631
-
Abe T, Kanno SI, Niihori T, Terao M, Takada S, Aoki Y. LZTR1 deficiency exerts high metastatic potential by enhancing sensitivity to EMT induction and controlling KLHL12-mediated collagen secretion. Cell Death Dis. 2023;14(8):556. https://doi.org/10.1038/s41419-023-06072-9
-
Cagnol S, Chambard JC. ERK and cell death: mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence. FEBS J. 2010;277(1):2-21. https://doi.org/10.1111/j.1742-4658.2009.07366.x
-
Chen J, Fujii K, Zhang L, Roberts T, Fu H. Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci U S A. 2001;98(14):7783-8. https://doi.org/10.1073/pnas.141224398
-
Umeki I, Niihori T, Abe T, Kanno SI, Okamoto N, Mizuno S, et al. Delineation of LZTR1 mutation-positive patients with Noonan syndrome and identification of LZTR1 binding to RAF1-PPP1CB complexes. Hum Genet. 2019;138(1):21-35. https://doi.org/10.1007/s00439-018-1951-7
-
Zimmermann S, Moelling K. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science. 1999;286(5445):1741-4. https://doi.org/10.1126/science.286.5445.1741
-
Bonsor DA, Simanshu DK. RAS and SHOC2 Roles in RAF Activation and Therapeutic Considerations. Annu Rev Cancer Biol. 2024;8:97-113. https://doi.org/10.1146/annurev-cancerbio-062822-030450
Wright EB, Lannigan DA. Therapeutic targeting of p90 ribosomal S6 kinase. Front Cell Dev Biol. 2023;11:1297292. https://doi.org/10.3389/fcell.2023.1297292
-
Koutsougianni F, Alexopoulou D, Uvez A, Lamprianidou A, Sereti E, Tsimplouli C, et al. P90 ribosomal S6 kinases: A bona fide target for novel targeted anticancer therapies? Biochem Pharmacol. 2023;210:115488. https://doi.org/10.1016/j.bcp.2023.115488
-
Katayama K, Nishihata A. RSK Inhibition Induces Apoptosis by Downregulating Protein Synthesis in a Variety of Acute Myeloid Leukemia Cell Lines. Biol Pharm Bull. 2021;44(12):1843-50. https://doi.org/10.1248/bpb.b21-00531
-
Tan Y, Ruan H, Demeter MR, Comb MJ. p90(RSK) blocks bad-mediated cell death via a protein kinase C-dependent pathway. J Biol Chem. 1999;274(49):34859-67. https://doi.org/10.1074/jbc.274.49.34859
-
Fernandez-Medarde A, Santos E. Ras in cancer and developmental diseases. Genes Cancer. 2011;2(3):344-58. https://doi.org/10.1177/1947601911411084
-
Neophytou CM, Trougakos IP, Erin N, Papageorgis P. Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance. Cancers (Basel). 2021;13(17). https://doi.org/10.3390/cancers13174363