Research Article
BibTex RIS Cite

Özel yetenekliler ile çalışan öğretmenlerin yapay zekâ okuryazarlığının ve yapay zekâya yönelik tutumlarının belirlenmesi ve bazı değişkenlere göre incelenmesi

Year 2024, Volume: 5 Issue: 2, 278 - 299, 31.12.2024
https://doi.org/10.52911/itall.1551369

Abstract

Bu araştırma, özel yetenekli öğrencilerle çalışan öğretmenlerin yapay zekâ okuryazarlığı ve yapay zekâya yönelik tutumlarının ne düzeyde olduğunu belirlemeyi ve sonuçları bazı değişkenlere gore incelemeyi amaçlamıştır. Araştırma, kolayda örnekleme yöntemiyle seçilen 107 bilim ve sanat merkezi (BİLSEM) öğretmeninin katılımıyla gerçekleştirilmiştir. Veriler, Yapay Zekâ Okuryazarlığı Ölçeği ve Yapay Zekâya Yönelik Genel Tutum Ölçeği kullanılarak toplanmıştır. Bulgular, öğretmenlerin genel olarak yapay zekâ okuryazarlığı ve yapay zekâya yönelik tutumlarının yüksek olduğunu göstermektedir. Cinsiyet karşılaştırmalarında, erkek öğretmenlerin yapay zekâ okuryazarlığı ve tutumlarının kadın öğretmenlerden daha yüksek olduğu tespit edilmiştir. Yaş, mesleki deneyim, BİLSEM'de çalışma süresi, eğitim seviyesi ve branş gibi diğer değişkenlerin yapay zekâ okuryazarlığı ve tutum üzerinde anlamlı bir etkisi bulunmamıştır. Sonuç olarak, özel yetenekli öğrencilerle çalışan öğretmenlerin yapay zekâya ilişkin bilgi ve tutumlarının genel olarak olumlu olduğu, ancak cinsiyet farklılıklarının bulunduğu görülmüştür. Bu nedenle, öğretmenlerin yapay zekâ eğitimi ve profesyonel gelişim fırsatlarına erişimlerinin artırılması, özellikle kadın öğretmenlerin teknolojiye yönelik bilgi ve tutumlarının geliştirilmesi önerilmektedir.

References

  • Aaker, D. A., Kumar, V., & Day, G. S. (2007). Marketing research (9th ed.). John Wiley & Sons.
  • Baştürk, S., & Taştep, M. (2013). Evren ve örneklem. In S. Baştürk (Ed.), Bilimsel araştırma yöntemleri (pp. 129–159). Vize Yayıncılık.
  • Cassell, J. (2002). Genderizing HCI. In J. A. Jacko & A. Sears (Eds.), The human-computer interaction handbook: Fundamentals, evolving technologies and emerging applications (pp. 401–412). L. Erlbaum Associates Inc.
  • Crompton, H., Burke, D., & Gregory, K. H. (2020). Artificial intelligence in education: Promises and implications for teaching and learning. Educational Technology, 60(1), 31–41.
  • Haşılolu, S., Baran, T., & Aydın, O. (2015). Pazarlama araştırmalarındaki potansiyel problemlere yönelik bir araştırma: Kolayda örnekleme ve sıklık ifadeli ölçek maddeleri. Pamukkale İşletme ve Bilişim Yönetimi Dergisi, 1, 19–28.
  • Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and implications for teaching and learning. Center for Curriculum Redesign.
  • Johnson, L., Smith, R., Willis, H., Levine, A., & Haywood, K. (2017). The 2017 Horizon Report. EDUCAUSE Learning Initiative.
  • Kaya, F., Aydin, F., Schepman, A., Rodway, P., Yetişensoy, O., & Demir Kaya, M. (2022). The roles of personality traits, AI anxiety, and demographic factors in attitudes towards artificial intelligence. International Journal of Human–Computer Interaction. https://doi.org/10.1080/10447318.2022.2151730
  • Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–16.
  • Luckin, R. (2017). Towards artificial intelligence-based assessment systems. Nature Human Behaviour, 1(3), 1–3.
  • Lynch, M. (2020). How artificial intelligence will impact education. The Tech Edvocate. Retrieved from https://www.thetechedvocate.org
  • Malhotra, N. K. (2004). Marketing research: An applied orientation (4th ed.). Pearson Prentice Hall.
  • Öztürk, B. (2018). İstatistiksel analiz yöntemleri: ANOVA ve uygulamaları. Bilimsel Yayınevi.
  • Polatgil, M., & Güler, A. (2023). Yapay zekâ okuryazarlığı ölçeğinin Türkçe’ye uyarlanması. Sosyal Bilimlerde Nicel Araştırmalar Dergisi, 3(2), 99–114.
  • Schepman, A., & Rodway, P. (2020). Initial validation of the general attitudes towards artificial intelligence scale. Computers in Human Behavior Reports, 1, 100014. https://doi.org/10.1016/j.chbr.2020.100014
  • Schepman, A., & Rodway, P. (2022). The General Attitudes Towards Artificial Intelligence Scale (GAAIS): Confirmatory validation and associations with personality, corporate distrust, and general trust. International Journal of Human–Computer Interaction. https://doi.org/10.1080/10447318.2022.2085400
  • Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13–35.
  • Seyrek, M., Yıldız, S., Emeksiz, H., Şahin, A., & Türkmen, M. T. (2024). Öğretmenlerin eğitimde yapay zeka kullanımına yönelik algıları. International Journal of Social and Humanities Sciences Research (JSHSR, 11(106), 845–856. https://doi.org/10.5281/zenodo.11113077
  • Singleton, R. A., & Straits, B. C. (2005). Approaches to social research (4th ed.). Oxford University Press.
  • Smith, J., & Brown, L. (2020). Statistical methods for data analysis. Academic Press.
  • Stoet, G., & Geary, D. C. (2018). The gender-equality paradox in STEM education. Psychological Science, 29(4), 581–593. https://doi.org/10.1177/0956797617741719
  • Tabachnick, B. G., & Fidell, L. S. (2015). Using multivariate statistics (6th ed.). Allyn & Bacon/Pearson Education.
  • Teo, T. (2011). Factors influencing teachers’ intention to use technology: Model development and test. Computers & Education, 57(4), 2432–2440.
  • Tuomi, I. (2018). The impact of artificial intelligence on learning, teaching, and education: Policies for the future. European Commission, Joint Research Centre (JRC).
  • Van der Spoel, I., Noroozi, O., Schuurink, E., & van Ginkel, S. (2020). Teachers’ online teaching expectations and experiences during the Covid19-pandemic in the Netherlands. European Journal of Teacher Education, 43(4), 623–638.
  • Xu, W., & Zhang, Y. (2020). Teacher professional development in the era of AI: Opportunities and challenges. Journal of Educational Technology Development and Exchange, 13(1), 33–49.
  • Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education: Where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1–27.
  • Zikmund, W. G. (1997). Business research methods (5th ed.). The Dryden Press.

Determination of artificial intelligence literacy and attitudes towards artificial intelligence of teachers working with gifted students and examining them according to some variables

Year 2024, Volume: 5 Issue: 2, 278 - 299, 31.12.2024
https://doi.org/10.52911/itall.1551369

Abstract

This research aimed to determine the level of artificial intelligence literacy and attitudes towards artificial intelligence of teachers working with gifted students and to examine the results according to some variables. The study was conducted with the participation of 107 science and art center (BİLSEM) teachers selected by convenience sampling method. Data were collected using the Artificial Intelligence Literacy Scale and the General Attitude Towards Artificial Intelligence Scale. The findings show that teachers generally have high levels of artificial intelligence literacy and attitudes towards artificial intelligence. In gender comparisons, it was found that male teachers had higher AI literacy and attitudes than female teachers. Other variables such as age, professional experience, working time in BİLSEM, education level and branch did not have a significant effect on artificial intelligence literacy and attitude. As a result, it was observed that the knowledge and attitudes of teachers working with gifted students towards artificial intelligence were generally positive, but there were gender differences. Therefore, it is recommended that teachers' access to artificial intelligence training and professional development opportunities should be increased and especially female teachers' knowledge and attitudes towards technology should be improved.

Thanks

Thanks for your support.

References

  • Aaker, D. A., Kumar, V., & Day, G. S. (2007). Marketing research (9th ed.). John Wiley & Sons.
  • Baştürk, S., & Taştep, M. (2013). Evren ve örneklem. In S. Baştürk (Ed.), Bilimsel araştırma yöntemleri (pp. 129–159). Vize Yayıncılık.
  • Cassell, J. (2002). Genderizing HCI. In J. A. Jacko & A. Sears (Eds.), The human-computer interaction handbook: Fundamentals, evolving technologies and emerging applications (pp. 401–412). L. Erlbaum Associates Inc.
  • Crompton, H., Burke, D., & Gregory, K. H. (2020). Artificial intelligence in education: Promises and implications for teaching and learning. Educational Technology, 60(1), 31–41.
  • Haşılolu, S., Baran, T., & Aydın, O. (2015). Pazarlama araştırmalarındaki potansiyel problemlere yönelik bir araştırma: Kolayda örnekleme ve sıklık ifadeli ölçek maddeleri. Pamukkale İşletme ve Bilişim Yönetimi Dergisi, 1, 19–28.
  • Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and implications for teaching and learning. Center for Curriculum Redesign.
  • Johnson, L., Smith, R., Willis, H., Levine, A., & Haywood, K. (2017). The 2017 Horizon Report. EDUCAUSE Learning Initiative.
  • Kaya, F., Aydin, F., Schepman, A., Rodway, P., Yetişensoy, O., & Demir Kaya, M. (2022). The roles of personality traits, AI anxiety, and demographic factors in attitudes towards artificial intelligence. International Journal of Human–Computer Interaction. https://doi.org/10.1080/10447318.2022.2151730
  • Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–16.
  • Luckin, R. (2017). Towards artificial intelligence-based assessment systems. Nature Human Behaviour, 1(3), 1–3.
  • Lynch, M. (2020). How artificial intelligence will impact education. The Tech Edvocate. Retrieved from https://www.thetechedvocate.org
  • Malhotra, N. K. (2004). Marketing research: An applied orientation (4th ed.). Pearson Prentice Hall.
  • Öztürk, B. (2018). İstatistiksel analiz yöntemleri: ANOVA ve uygulamaları. Bilimsel Yayınevi.
  • Polatgil, M., & Güler, A. (2023). Yapay zekâ okuryazarlığı ölçeğinin Türkçe’ye uyarlanması. Sosyal Bilimlerde Nicel Araştırmalar Dergisi, 3(2), 99–114.
  • Schepman, A., & Rodway, P. (2020). Initial validation of the general attitudes towards artificial intelligence scale. Computers in Human Behavior Reports, 1, 100014. https://doi.org/10.1016/j.chbr.2020.100014
  • Schepman, A., & Rodway, P. (2022). The General Attitudes Towards Artificial Intelligence Scale (GAAIS): Confirmatory validation and associations with personality, corporate distrust, and general trust. International Journal of Human–Computer Interaction. https://doi.org/10.1080/10447318.2022.2085400
  • Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13–35.
  • Seyrek, M., Yıldız, S., Emeksiz, H., Şahin, A., & Türkmen, M. T. (2024). Öğretmenlerin eğitimde yapay zeka kullanımına yönelik algıları. International Journal of Social and Humanities Sciences Research (JSHSR, 11(106), 845–856. https://doi.org/10.5281/zenodo.11113077
  • Singleton, R. A., & Straits, B. C. (2005). Approaches to social research (4th ed.). Oxford University Press.
  • Smith, J., & Brown, L. (2020). Statistical methods for data analysis. Academic Press.
  • Stoet, G., & Geary, D. C. (2018). The gender-equality paradox in STEM education. Psychological Science, 29(4), 581–593. https://doi.org/10.1177/0956797617741719
  • Tabachnick, B. G., & Fidell, L. S. (2015). Using multivariate statistics (6th ed.). Allyn & Bacon/Pearson Education.
  • Teo, T. (2011). Factors influencing teachers’ intention to use technology: Model development and test. Computers & Education, 57(4), 2432–2440.
  • Tuomi, I. (2018). The impact of artificial intelligence on learning, teaching, and education: Policies for the future. European Commission, Joint Research Centre (JRC).
  • Van der Spoel, I., Noroozi, O., Schuurink, E., & van Ginkel, S. (2020). Teachers’ online teaching expectations and experiences during the Covid19-pandemic in the Netherlands. European Journal of Teacher Education, 43(4), 623–638.
  • Xu, W., & Zhang, Y. (2020). Teacher professional development in the era of AI: Opportunities and challenges. Journal of Educational Technology Development and Exchange, 13(1), 33–49.
  • Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education: Where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1–27.
  • Zikmund, W. G. (1997). Business research methods (5th ed.). The Dryden Press.
There are 28 citations in total.

Details

Primary Language English
Subjects Development of Science, Technology and Engineering Education and Programs
Journal Section Research Articles
Authors

Derya Yüreğilli Göksu 0000-0002-5218-0010

Seçkin Göksu 0000-0003-2226-3170

Early Pub Date December 23, 2024
Publication Date December 31, 2024
Submission Date September 17, 2024
Acceptance Date November 14, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Yüreğilli Göksu, D., & Göksu, S. (2024). Determination of artificial intelligence literacy and attitudes towards artificial intelligence of teachers working with gifted students and examining them according to some variables. Instructional Technology and Lifelong Learning, 5(2), 278-299. https://doi.org/10.52911/itall.1551369

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License.