Research Article
BibTex RIS Cite

Türkiye Nüfus Büyümesi ve Tahminleri: Matematiksel Büyüme Modelleri ve İstatistiksel Analiz İle Kuramsal ve Uygulamalı Bir Yaklaşım

Year 2018, Volume: 14 Issue: 28, 75 - 141, 31.07.2018

Abstract

Bu çalışmanın amacı, Verhulst ve Gompertz tarafından ilk tanımlamaları yapılan ve nüfus analizlerinde geniş uygulama imkânları

bulan matematiksel büyüme fonksiyonlarıyla, 1925-2015 dönemi için yeterli veri arz eden Türkiye nüfusunun büyüme eğilimini

ve özelliklerini analiz gelecekte ulaşacağı maksimum seviyeyi tespit etmektir. İlaveten bu dönem zarfında sağlanan mutlak ve

nispi büyüme oranlarını yine bu eğriler üzerinden hesaplamaktır. Geliştirdiğimiz matematiksel analiz ve istatistiksel uygulamayla

Türkiye nüfus verilerinin soyut düzeyde temsiliyeti hedeflenmiş, yapılan ileri istatistiksel çalışmayla keyfiyet test edilmiştir. Daha

sonra söz konusu fonksiyonlarla geleceğe dönük tahmin çalışmaları yapılmıştır. Bu şekilde Türkiye nüfusu hakkında matematiksel

büyüme modelleri, istatistiksel analiz ve geleceğe dönük tahminler ile kuramsal bir çerçeve tanımlanmıştır. Türkiye’nin 1925-

2015 dönemi toplam nüfus sayımı istatistikleri çalışmamızda kullanılmıştır. Lojistik fonksiyon ve Gompertz fonksiyonunda alt

ve üst asimptot arasında nüfusun gelişimi önce süratle artan sonra azalarak artan bir seyir halinde olacağı varsayımı ile hareket

edilir. Nüfusun gelişimi üst sınır olan taşıma kapasitesi ile sınırlıdır. Büyüme fonksiyonlarında nüfus bağımsız değişkene göre

sonsuz büyümez. Fonksiyonlarının birinci türevleri yıllık mutlak büyüme rakamlarının hesabında ve ortalama yıllık büyümenin

hesaplanmasında, ikinci türevler ise değişimlerdeki değişimin ve fonksiyon dönüm noktalarının hesabında kullanılmıştır.

Çalışmamızda SAS bilgisayar yazılımı kullanılmıştır. Gompertz fonksiyonu üzerinden yapılan ilave çalışmalara ve Amerikalı bilim

adamlarının nüfus çalışmasına da ayrıntılı olarak değinilmiştir.

References

  • Allen, R. G. D. (1969). Mathematical analysis for economists, Macmillan and Co. Ltd.
  • Berger, R. D. (1981). Comparison of the Gompertz and Logistic Equations to describe plant disease progress. Phytopathology, 71, 716‒719.
  • Burley, H. T. (1996). Growth rate tables. Cambridge University Press.
  • Carey, E. (2009). Using Calculus to Model the Growth of L. Plantarum Bacteria. Undergraduate Journal of Mathematical Modeling: One + Two, 1(2), 1‒11. http://dx.doi.org/10.5038/2326-3652.1.2.2
  • Chukwu, A. U. & Oyamakin, S. O. (2015). On Hyperbolic Gompertz Growth Model. World Academy of Science, Engineering and Technology International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 9(3), 189‒193.
  • Fekedulegn D. B. & Colbert, J. J. (1999). Parameter Estimation of Nonlinear Growth Models in Forestry, Silva Fennica 33(4), 327‒336.
  • Gebremariam, B. (2014). Is Nonlinear Regression Throwing you a curve? New diagnostic and inference tools in the NLIN procedure. Paper SAS384-2014, SAS Institute Inc. Retrieved from: https://support.sas.com/resources/papers/proceedings14/SAS384-2014.pdf
  • Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London, 115, 513‒583.
  • Gottschalk, P. G. & Dunn, J. R. (2005). The five-parameter logistic: A characterization and comparison with the four-parameter logistic. Analytical Biochemistry, 343, 54‒65. https://dx.doi.org/10.1016/j.ab.2005.04.035
  • Kirkwood, T. B. L. (2015). Deciphering death: a commentary on Gompertz (1825). Philos Trans R Soc Lond B Biol Sci., 370(1666). https://dx.doi.org/10.1098/rstb.2014.0379
  • Lampl, M. (2012) Perspectives on modelling human growth: Mathematical models and growth biology, Annals of Human Biology, 39(5), 342‒351. http://dx.doi.org/10.3109/03014460.2012.704072
  • Mahaffy, J. M. (2011). Discerete Modelling- U. S. Population. Math 636 - Mathematical Modeling Fall Semester, Retrieved from: http://jmahaffy.sdsu.edu/courses/f09/math636/lectures/uspop/uspop.html
  • Matsui, K. (2009), Gompertz-Matsui Model for HCV Kinetics, Ofuna Chuo Hospital, Kanagawa, Japan.
  • Matsui, K. Gompertz Curve. Kanagava, Japan: Ofuna Chuo Hospital. Retrieved from: http://gompertz-matsui.la.coocan.jp/
  • Paine, C. E. T., Marthews, T. R., Vogt, D. R., Purves, D., Rees, M., Hector, A., Turnbull, L. A. (2012). How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods in Ecology and Evolution, 3, 245–256, https://dx.doi.org/10.1111/j.2041-210X.2011.00155.x
  • Pearl, R. & Reed, J. L. (1920). On the rate of growth of the population of the united states since 1790 and its mathematical representation, Proceedings of The National Academy of Sciences, 6(6), 275‒288.
  • Richards, F. J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290–300.
  • Ricketts, J. H. & Head, G. A. (1999). A five-parameter logistic equation for investigating asymmetry of curvature in baroreflex studies. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 277(2), 441‒454 Retrieved from: https://www.physiology. org/doi/pdf/10.1152/ajpregu.1999.277.2.R441
  • SAS Documentation. Affecting Curvature through Parameterization. Retrieved from: https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_nlin_sect036.html
  • SAS/STAT. (2009). SAS/STAT® 9.2 user’s guide the NLIN procedure (Book Excerpt) (2nd electronic book).
  • Tjørve K. M. C. & Tjørve, E. (2017). The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS ONE, 12(6). https://doi.org/10.1371/journal.pone.0178691
  • Tsoularis, A. & Wallace, J. (2002). Analysis of logistic growth models. Mathematical Biosciences, 179, 21–55.
  • Tsoularis, A. (2001). Analysis of logistic growth models. Res. Lett. Inf. Math. Sci, 2, 23‒46. Retrieved from: http://www.massey.ac.nz/wwiims/~rlims
  • Wikipedia, Generalised logistic function. Retrieved from: https://en.wikipedia.org/wiki/Generalised_logistic_function.
  • Winsor, P. C. (1932). The Gompertz Curve as a growth curve. Proceedings of the National Academy of Sciences of the United States of America, 18(1), 1‒8.
  • Yamane, T. (1962). Mathematics for economists. Englewood Cliffs: Prentice-Hall Inc.

Turkish Population Growth and Estimates

Year 2018, Volume: 14 Issue: 28, 75 - 141, 31.07.2018

Abstract

This study aims to analyze the population growth trend and properties of Turkey between 1925 and 2015 and estimate the

maximum level to be reached in the future by using mathematical growth functions of Verhulst and Gompertz. The study

used SAS software. Additionally, the study calculates and charts absolute and relative growth rates of population through

the curves. The representation of Turkish population data at an abstract level was targeted with mathematical analysis and

statistical application. After the successful results were taken from the mathematical representation and statistical proof stages,

predictions for the future were made. Thus, a theoretical framework with mathematical growth models, statistical analyses,

and predictions related to the future of Turkish population is defined. The necessity of using logistic and Gompertz growth

functions for population analysis is explained in detail. These functions analyze growth with the assumption that population

rapidly increases first, then the rate of increase slows down, reaching a maximum level at upper asymptote (carrying capacity).

There is a limit to growth in these functions based on the geography and resources of the country. The first derivatives of

the growth functions are used for calculating annual absolute growth and average annual growth rates of population. The

second derivatives have been used for calculating change amount of absolute growth figures and reflection points of functions.

Additionally, some thoughts on Gompertz function and American experience on population are explained in detail.

References

  • Allen, R. G. D. (1969). Mathematical analysis for economists, Macmillan and Co. Ltd.
  • Berger, R. D. (1981). Comparison of the Gompertz and Logistic Equations to describe plant disease progress. Phytopathology, 71, 716‒719.
  • Burley, H. T. (1996). Growth rate tables. Cambridge University Press.
  • Carey, E. (2009). Using Calculus to Model the Growth of L. Plantarum Bacteria. Undergraduate Journal of Mathematical Modeling: One + Two, 1(2), 1‒11. http://dx.doi.org/10.5038/2326-3652.1.2.2
  • Chukwu, A. U. & Oyamakin, S. O. (2015). On Hyperbolic Gompertz Growth Model. World Academy of Science, Engineering and Technology International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 9(3), 189‒193.
  • Fekedulegn D. B. & Colbert, J. J. (1999). Parameter Estimation of Nonlinear Growth Models in Forestry, Silva Fennica 33(4), 327‒336.
  • Gebremariam, B. (2014). Is Nonlinear Regression Throwing you a curve? New diagnostic and inference tools in the NLIN procedure. Paper SAS384-2014, SAS Institute Inc. Retrieved from: https://support.sas.com/resources/papers/proceedings14/SAS384-2014.pdf
  • Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London, 115, 513‒583.
  • Gottschalk, P. G. & Dunn, J. R. (2005). The five-parameter logistic: A characterization and comparison with the four-parameter logistic. Analytical Biochemistry, 343, 54‒65. https://dx.doi.org/10.1016/j.ab.2005.04.035
  • Kirkwood, T. B. L. (2015). Deciphering death: a commentary on Gompertz (1825). Philos Trans R Soc Lond B Biol Sci., 370(1666). https://dx.doi.org/10.1098/rstb.2014.0379
  • Lampl, M. (2012) Perspectives on modelling human growth: Mathematical models and growth biology, Annals of Human Biology, 39(5), 342‒351. http://dx.doi.org/10.3109/03014460.2012.704072
  • Mahaffy, J. M. (2011). Discerete Modelling- U. S. Population. Math 636 - Mathematical Modeling Fall Semester, Retrieved from: http://jmahaffy.sdsu.edu/courses/f09/math636/lectures/uspop/uspop.html
  • Matsui, K. (2009), Gompertz-Matsui Model for HCV Kinetics, Ofuna Chuo Hospital, Kanagawa, Japan.
  • Matsui, K. Gompertz Curve. Kanagava, Japan: Ofuna Chuo Hospital. Retrieved from: http://gompertz-matsui.la.coocan.jp/
  • Paine, C. E. T., Marthews, T. R., Vogt, D. R., Purves, D., Rees, M., Hector, A., Turnbull, L. A. (2012). How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods in Ecology and Evolution, 3, 245–256, https://dx.doi.org/10.1111/j.2041-210X.2011.00155.x
  • Pearl, R. & Reed, J. L. (1920). On the rate of growth of the population of the united states since 1790 and its mathematical representation, Proceedings of The National Academy of Sciences, 6(6), 275‒288.
  • Richards, F. J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290–300.
  • Ricketts, J. H. & Head, G. A. (1999). A five-parameter logistic equation for investigating asymmetry of curvature in baroreflex studies. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 277(2), 441‒454 Retrieved from: https://www.physiology. org/doi/pdf/10.1152/ajpregu.1999.277.2.R441
  • SAS Documentation. Affecting Curvature through Parameterization. Retrieved from: https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_nlin_sect036.html
  • SAS/STAT. (2009). SAS/STAT® 9.2 user’s guide the NLIN procedure (Book Excerpt) (2nd electronic book).
  • Tjørve K. M. C. & Tjørve, E. (2017). The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS ONE, 12(6). https://doi.org/10.1371/journal.pone.0178691
  • Tsoularis, A. & Wallace, J. (2002). Analysis of logistic growth models. Mathematical Biosciences, 179, 21–55.
  • Tsoularis, A. (2001). Analysis of logistic growth models. Res. Lett. Inf. Math. Sci, 2, 23‒46. Retrieved from: http://www.massey.ac.nz/wwiims/~rlims
  • Wikipedia, Generalised logistic function. Retrieved from: https://en.wikipedia.org/wiki/Generalised_logistic_function.
  • Winsor, P. C. (1932). The Gompertz Curve as a growth curve. Proceedings of the National Academy of Sciences of the United States of America, 18(1), 1‒8.
  • Yamane, T. (1962). Mathematics for economists. Englewood Cliffs: Prentice-Hall Inc.
There are 26 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Cemil İskender

Publication Date July 31, 2018
Published in Issue Year 2018 Volume: 14 Issue: 28

Cite

APA İskender, C. (2018). Türkiye Nüfus Büyümesi ve Tahminleri: Matematiksel Büyüme Modelleri ve İstatistiksel Analiz İle Kuramsal ve Uygulamalı Bir Yaklaşım. Istanbul University Econometrics and Statistics E-Journal, 14(28), 75-141.
AMA İskender C. Türkiye Nüfus Büyümesi ve Tahminleri: Matematiksel Büyüme Modelleri ve İstatistiksel Analiz İle Kuramsal ve Uygulamalı Bir Yaklaşım. Istanbul University Econometrics and Statistics e-Journal. July 2018;14(28):75-141.
Chicago İskender, Cemil. “Türkiye Nüfus Büyümesi Ve Tahminleri: Matematiksel Büyüme Modelleri Ve İstatistiksel Analiz İle Kuramsal Ve Uygulamalı Bir Yaklaşım”. Istanbul University Econometrics and Statistics E-Journal 14, no. 28 (July 2018): 75-141.
EndNote İskender C (July 1, 2018) Türkiye Nüfus Büyümesi ve Tahminleri: Matematiksel Büyüme Modelleri ve İstatistiksel Analiz İle Kuramsal ve Uygulamalı Bir Yaklaşım. Istanbul University Econometrics and Statistics e-Journal 14 28 75–141.
IEEE C. İskender, “Türkiye Nüfus Büyümesi ve Tahminleri: Matematiksel Büyüme Modelleri ve İstatistiksel Analiz İle Kuramsal ve Uygulamalı Bir Yaklaşım”, Istanbul University Econometrics and Statistics e-Journal, vol. 14, no. 28, pp. 75–141, 2018.
ISNAD İskender, Cemil. “Türkiye Nüfus Büyümesi Ve Tahminleri: Matematiksel Büyüme Modelleri Ve İstatistiksel Analiz İle Kuramsal Ve Uygulamalı Bir Yaklaşım”. Istanbul University Econometrics and Statistics e-Journal 14/28 (July 2018), 75-141.
JAMA İskender C. Türkiye Nüfus Büyümesi ve Tahminleri: Matematiksel Büyüme Modelleri ve İstatistiksel Analiz İle Kuramsal ve Uygulamalı Bir Yaklaşım. Istanbul University Econometrics and Statistics e-Journal. 2018;14:75–141.
MLA İskender, Cemil. “Türkiye Nüfus Büyümesi Ve Tahminleri: Matematiksel Büyüme Modelleri Ve İstatistiksel Analiz İle Kuramsal Ve Uygulamalı Bir Yaklaşım”. Istanbul University Econometrics and Statistics E-Journal, vol. 14, no. 28, 2018, pp. 75-141.
Vancouver İskender C. Türkiye Nüfus Büyümesi ve Tahminleri: Matematiksel Büyüme Modelleri ve İstatistiksel Analiz İle Kuramsal ve Uygulamalı Bir Yaklaşım. Istanbul University Econometrics and Statistics e-Journal. 2018;14(28):75-141.