BibTex RIS Kaynak Göster

KISMİ EN KÜÇÜK KARELER REGRESYONU YARDIMIYLA OPTİMUM BİLEŞEN SAYISINI SEÇMEDE MODEL SEÇME KRİTERLERİNİN PERFORMANS KARŞILAŞTIRMASI

Yıl 2011, Cilt: 15 , 38 - 52, 02.05.2012

Öz

Regresyon modellerinin çok sayıda açıklayıcı değişkene sahip olması, gözlem sayısının açıklayıcı değişken sayısından daha az olması ve açıklayıcı değişkenler arasında çoklu doğrusal bağlantı probleminin varlığı gibi durumlar, regresyon analizindeki problemlerden bazılarıdır. Bu problemler en küçük kareler yöntemi varsayımlarını bozmaktadır. Kısmi en küçük kareler regresyonu (KEKKR), bu varsayımların bozulduğu durumlarda regresyon analizi yapmaya olanak sağlayan: kısmi en küçük kareler (KEKK) ve çoklu doğrusal regresyon yöntemlerinden oluşan çok değişkenli istatistiksel bir metottur. Bu çalışmada, çoklu doğrusal bağlantı probleminin olduğu veri setlerinde KEKKR tarafından elde edilen gizli değişkenler ile model kurulup, gizli değişkenlerin optimum sayısını saptamak için ise MAIC (Bedrick & Tsai, 1994), MAIC (Bozdogan,2000), MA_opt(PRESS) ve Wold's R model seçme kriterleri kullanılmıştır. Model seçme kriterlerinin optimum sayıda gizli değişkeni bulma performanslarını karşılaştırmak amacıyla k-çapraz geçerlilikte benzetim çalışması yapılmıştır. Benzetim çalışması sonucunda; kriterlerin küçük boyutlu veri setlerinde doğru bir şekilde gizli değişken sayısını bulduğu fakat veri setlerinin boyutu arttıkça kriterlerin optimum sayıdan daha fazla sayıda gizli değişken seçme eğiliminde oldukları görülmüştür. Ayrıca, MAKAKIE ve MBEDRICK kriterlerinin hemen hemen aynı sonuçları bulmakta olduğu fakat regresyon modellerinin boyutu büyütüldüğünde optimum sayıda gizli değişkenleri bulamadığı saptanmıştır. MA_opt(PRESS) kriteri ve Wold's R kriteri yaklaşık olarak aynı sonuçları vermekte olup diğer kriterlere göre daha doğru iyi bir performansla optimum sayıda gizli bileşenleri bulmaktadırlar.

Yıl 2011, Cilt: 15 , 38 - 52, 02.05.2012

Öz

Toplam 0 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Elif Bulut

Özlem Gürünlü Alma

Yayımlanma Tarihi 2 Mayıs 2012
Yayımlandığı Sayı Yıl 2011 Cilt: 15

Kaynak Göster

APA Bulut, E., & Gürünlü Alma, Ö. (2012). KISMİ EN KÜÇÜK KARELER REGRESYONU YARDIMIYLA OPTİMUM BİLEŞEN SAYISINI SEÇMEDE MODEL SEÇME KRİTERLERİNİN PERFORMANS KARŞILAŞTIRMASI. Istanbul University Econometrics and Statistics E-Journal, 15, 38-52.
AMA Bulut E, Gürünlü Alma Ö. KISMİ EN KÜÇÜK KARELER REGRESYONU YARDIMIYLA OPTİMUM BİLEŞEN SAYISINI SEÇMEDE MODEL SEÇME KRİTERLERİNİN PERFORMANS KARŞILAŞTIRMASI. Istanbul University Econometrics and Statistics e-Journal. Mayıs 2012;15:38-52.
Chicago Bulut, Elif, ve Özlem Gürünlü Alma. “KISMİ EN KÜÇÜK KARELER REGRESYONU YARDIMIYLA OPTİMUM BİLEŞEN SAYISINI SEÇMEDE MODEL SEÇME KRİTERLERİNİN PERFORMANS KARŞILAŞTIRMASI”. Istanbul University Econometrics and Statistics E-Journal 15, Mayıs (Mayıs 2012): 38-52.
EndNote Bulut E, Gürünlü Alma Ö (01 Mayıs 2012) KISMİ EN KÜÇÜK KARELER REGRESYONU YARDIMIYLA OPTİMUM BİLEŞEN SAYISINI SEÇMEDE MODEL SEÇME KRİTERLERİNİN PERFORMANS KARŞILAŞTIRMASI. Istanbul University Econometrics and Statistics e-Journal 15 38–52.
IEEE E. Bulut ve Ö. Gürünlü Alma, “KISMİ EN KÜÇÜK KARELER REGRESYONU YARDIMIYLA OPTİMUM BİLEŞEN SAYISINI SEÇMEDE MODEL SEÇME KRİTERLERİNİN PERFORMANS KARŞILAŞTIRMASI”, Istanbul University Econometrics and Statistics e-Journal, c. 15, ss. 38–52, 2012.
ISNAD Bulut, Elif - Gürünlü Alma, Özlem. “KISMİ EN KÜÇÜK KARELER REGRESYONU YARDIMIYLA OPTİMUM BİLEŞEN SAYISINI SEÇMEDE MODEL SEÇME KRİTERLERİNİN PERFORMANS KARŞILAŞTIRMASI”. Istanbul University Econometrics and Statistics e-Journal 15 (Mayıs 2012), 38-52.
JAMA Bulut E, Gürünlü Alma Ö. KISMİ EN KÜÇÜK KARELER REGRESYONU YARDIMIYLA OPTİMUM BİLEŞEN SAYISINI SEÇMEDE MODEL SEÇME KRİTERLERİNİN PERFORMANS KARŞILAŞTIRMASI. Istanbul University Econometrics and Statistics e-Journal. 2012;15:38–52.
MLA Bulut, Elif ve Özlem Gürünlü Alma. “KISMİ EN KÜÇÜK KARELER REGRESYONU YARDIMIYLA OPTİMUM BİLEŞEN SAYISINI SEÇMEDE MODEL SEÇME KRİTERLERİNİN PERFORMANS KARŞILAŞTIRMASI”. Istanbul University Econometrics and Statistics E-Journal, c. 15, 2012, ss. 38-52.
Vancouver Bulut E, Gürünlü Alma Ö. KISMİ EN KÜÇÜK KARELER REGRESYONU YARDIMIYLA OPTİMUM BİLEŞEN SAYISINI SEÇMEDE MODEL SEÇME KRİTERLERİNİN PERFORMANS KARŞILAŞTIRMASI. Istanbul University Econometrics and Statistics e-Journal. 2012;15:38-52.