Research Article
BibTex RIS Cite

Year 2025, Volume: 6 Issue: 2, 56 - 67, 31.12.2025

Abstract

References

  • REFERENCES
  • [1] Akay, E. C. (2018). Ekonometride yeni bir ufuk: Büyük veri ve makine öğrenmesi. Sosyal Bilimler Araştırma Dergisi, 7(2), 4153. [Turkish]
  • [2] Alajmi, M. S., & Almeshal, A. M. (2021). Modeling of Cutting Force in the Turning of AISI 4340 Using Gaussian Process Regression Algorithm. Applied Sciences, 11(9), 4055. [CrossRef]
  • [3] Kumar, V., Dubey, V., & Sharma, A. K. (2023). Comparative analysis of different machine learning algorithms in prediction of cutting force using hybrid nanofluid enriched cutting fluid in turning operation. Materials Today: Proceedings, Inpress. doi: 10.1016/j.matpr.2023.05.216 [CrossRef]
  • [4] Mikołajczyk, T., Nowicki, Ł., & Górski, F. (2018). Artificial intelligence techniques in predicting cutting forces: A comparative study. Mechanik, 91(7), 569–572.
  • [5] George, K., Kannan, S., Raza, A., & Pervaiz, S. (2021). A hybrid finite element—machine learning backward training approach to analyze the optimal machining conditions. Materials, 14(21), 6717. [CrossRef]
  • [6] Kant, G., & Sangwan, K. S. (2015). Predictive modelling for energy consumption in machining using artificial neural network. Procedia Cirp, 37, 205210. [CrossRef]
  • [7] Yang, C., Jiang, H. and Liu, B. (2020) Optimization design of cutting parameters based on the support vector machine and particle swarm algorithm. Open Access Library Journal, 7, 18. [CrossRef]
  • [8] Dehghanpour Abyaneh, M., Narimani, P., Javadi, M. S., Golabchi, M., Attarsharghi, S., & Hadad, M. (2024). Predicting surface roughness and grinding forces in UNS S34700 steel grinding: A machine learning and genetic algorithm approach to coolant effects. Physchem, 4(4), 495523. [CrossRef]
  • [9] Hernández-González, L.W., Curra-Sosa, D. A., Pérez-Rodríguez, R., & Zambrano-Robledo, P. D. C. (2021). Modeling Cutting forces in high-speed turning using artificial neural networks. TecnoLógicas, 24(51), 4361. [CrossRef]
  • [10] Das, A., Das, S. R., Panda, J. P., Dey, A., Gajrani, K. K., Somani, N., & Gupta, N. (2022). Machine learning based modeling and optimization in hard turning of AISI D6 steel with newly developed AlTiSiN coated carbide tool. arXiv preprint arXiv:2202.00596. doi:10.48550/arXiv.2202.00596 [CrossRef]
  • [11] Pawanr, S., & Gupta, K. (2025). Analysis of surface roughness and machine learning-based modeling in dry turning of super duplex stainless steel using textured tools. Technologies, 13(6), 243. [CrossRef]
  • [12] Jouini, N., A. Ghani, J., Yaqoob, S., & Juri, A. Z. (2025). Optimized machining parameters for high-speed turning process: a comparative study of dry and Cryo+MQL techniques. Processes, 13(3), 739. [CrossRef]
  • [13] Sudarsan, D., Bovas Herbert Bejaxhin, A. & Rajkumar, S. (2025). Enhancing CNC turning efficiency of aluminium 7071 alloy using taguchi method and L27 array. International Journal of Precision Engineering and Manufacturing, 26, 177–194. [CrossRef]
  • [14] Somatkar, A. A., Dwivedi, R., & Chinchanikar, S. S. (2024). Enhancing surface integrity and quality through roller burnishing: a comprehensive review of parameters optimization, and applications. Communications on Applied Nonlinear Analysis, 31(1s), 151169. [CrossRef]
  • [15] Dwivedi, R., Somatkar, A., & Chinchanikar, S. (2024). Modeling and optimization of roller burnishing of Al6061-T6 process for minimum surface roughness, better microhardness and roundness. Obrabotka Metallov/Metal Working and Material Science, 26(3), 5265. [CrossRef]
  • [16] Somatkar, A., Dwivedi, R., & Chinchanikar, S. (2024). Comparative evaluation of roller burnishing of Al6061-T6 alloy under dry and nanofluid minimum quantity lubrication conditions. Obrabotka Metallov/Metal Working and Material Science, 26(4), 5774. [CrossRef]
  • [17] Hashemitaheri, M., Mekarthy, S. M. R., & Cherukuri, H. (2020). Prediction of specific cutting forces and maximum tool temperatures in orthogonal machining by support vector and Gaussian process regression methods. Procedia Manufacturing, 48, 1000–1008. [CrossRef]
  • [18] Klippel, H., Sanchez, E. G., Isabel, M., Röthlin, M., Afrasiabi, M., Michal, K., & Wegener, K. (2022). Cutting force prediction of Ti6Al4V using a machine learning model of SPH orthogonal cutting process simulations. Journal of Machine Engineering, 22(1), 111–123. [CrossRef]
  • [19] Karasu, S., Altan, A., Saraç, Z., & Hacioğlu, R. (2018). Prediction of Bitcoin prices with machine learning methods using time series data. In 2018 26th signal processing and communications applications conference (SIU) (pp. 14). IEEE. [CrossRef]
  • [20] Jierula, A., Wang, S., OH, T.-M., & Wang, P. (2021). Study on accuracy metrics for evaluating the predictions of damage locations in deep piles using artificial neural networks with acoustic emission data. Applied Sciences, 11(5), 2314. [CrossRef]
  • [21] Wang Y, Xu C, Wang Z, Zhang S, Zhu Y, Yuan J (2018) Time series modeling of pertussis incidence in China from 2004 to 2018 with a novel wavelet based SARIMA-NAR hybrid model. PLoS One, 13(12), e0208404. [CrossRef]
  • [22] Çınaroğlu, S. (2017). Comparison of machine learning regression methods to predict health expenditures. Uludag Universitesi Mühendislik Fakültesi Dergisi, 22(2), 179200.
  • [23] Ross, S. M. (2017). Chapter 8-Estimation. In S. M. Ross, (Ed.), Introductory Statistics (4th ed., pp. 329380). Academic Press. [CrossRef]
  • [24] Boy, M. (2004). Kesme parametrelerine bağlı olarak talaş arka yüzey sıcaklığının deneysel olarak incelenmesi [Yüksek Lisans Tezi]. Gazi Üniversitesi. [Turkish]
  • [25] Chen, C. S., & Jeng, Y. (2015). A data-driven multidimensional signal-noise decomposition approach for GPR data processing. Computers & Geosciences, 85, 164174. [CrossRef]

Cutting force estimation in turning of AISI 1117 free-cutting steel using machine learning algorithms

Year 2025, Volume: 6 Issue: 2, 56 - 67, 31.12.2025

Abstract

Machine learning is widely used in several scientific domains for data prediction. Predicting cutting forces and temperature distribution in the domain of machining, a subdivision of manufacturing techniques, is crucial for enhancing production procedures. Studies in this topic frequently employ experimental methods and the finite element method, a numerical computation technique. Estimation algorithms can be employed to aid experimental and numerical computation procedures due to their lengthy cost and duration. This study analysed several machine learning algorithms and determined that the Cubic Support Vector Machine and Gaussian Process Regression (GPR) methods yielded the most comparable results.

References

  • REFERENCES
  • [1] Akay, E. C. (2018). Ekonometride yeni bir ufuk: Büyük veri ve makine öğrenmesi. Sosyal Bilimler Araştırma Dergisi, 7(2), 4153. [Turkish]
  • [2] Alajmi, M. S., & Almeshal, A. M. (2021). Modeling of Cutting Force in the Turning of AISI 4340 Using Gaussian Process Regression Algorithm. Applied Sciences, 11(9), 4055. [CrossRef]
  • [3] Kumar, V., Dubey, V., & Sharma, A. K. (2023). Comparative analysis of different machine learning algorithms in prediction of cutting force using hybrid nanofluid enriched cutting fluid in turning operation. Materials Today: Proceedings, Inpress. doi: 10.1016/j.matpr.2023.05.216 [CrossRef]
  • [4] Mikołajczyk, T., Nowicki, Ł., & Górski, F. (2018). Artificial intelligence techniques in predicting cutting forces: A comparative study. Mechanik, 91(7), 569–572.
  • [5] George, K., Kannan, S., Raza, A., & Pervaiz, S. (2021). A hybrid finite element—machine learning backward training approach to analyze the optimal machining conditions. Materials, 14(21), 6717. [CrossRef]
  • [6] Kant, G., & Sangwan, K. S. (2015). Predictive modelling for energy consumption in machining using artificial neural network. Procedia Cirp, 37, 205210. [CrossRef]
  • [7] Yang, C., Jiang, H. and Liu, B. (2020) Optimization design of cutting parameters based on the support vector machine and particle swarm algorithm. Open Access Library Journal, 7, 18. [CrossRef]
  • [8] Dehghanpour Abyaneh, M., Narimani, P., Javadi, M. S., Golabchi, M., Attarsharghi, S., & Hadad, M. (2024). Predicting surface roughness and grinding forces in UNS S34700 steel grinding: A machine learning and genetic algorithm approach to coolant effects. Physchem, 4(4), 495523. [CrossRef]
  • [9] Hernández-González, L.W., Curra-Sosa, D. A., Pérez-Rodríguez, R., & Zambrano-Robledo, P. D. C. (2021). Modeling Cutting forces in high-speed turning using artificial neural networks. TecnoLógicas, 24(51), 4361. [CrossRef]
  • [10] Das, A., Das, S. R., Panda, J. P., Dey, A., Gajrani, K. K., Somani, N., & Gupta, N. (2022). Machine learning based modeling and optimization in hard turning of AISI D6 steel with newly developed AlTiSiN coated carbide tool. arXiv preprint arXiv:2202.00596. doi:10.48550/arXiv.2202.00596 [CrossRef]
  • [11] Pawanr, S., & Gupta, K. (2025). Analysis of surface roughness and machine learning-based modeling in dry turning of super duplex stainless steel using textured tools. Technologies, 13(6), 243. [CrossRef]
  • [12] Jouini, N., A. Ghani, J., Yaqoob, S., & Juri, A. Z. (2025). Optimized machining parameters for high-speed turning process: a comparative study of dry and Cryo+MQL techniques. Processes, 13(3), 739. [CrossRef]
  • [13] Sudarsan, D., Bovas Herbert Bejaxhin, A. & Rajkumar, S. (2025). Enhancing CNC turning efficiency of aluminium 7071 alloy using taguchi method and L27 array. International Journal of Precision Engineering and Manufacturing, 26, 177–194. [CrossRef]
  • [14] Somatkar, A. A., Dwivedi, R., & Chinchanikar, S. S. (2024). Enhancing surface integrity and quality through roller burnishing: a comprehensive review of parameters optimization, and applications. Communications on Applied Nonlinear Analysis, 31(1s), 151169. [CrossRef]
  • [15] Dwivedi, R., Somatkar, A., & Chinchanikar, S. (2024). Modeling and optimization of roller burnishing of Al6061-T6 process for minimum surface roughness, better microhardness and roundness. Obrabotka Metallov/Metal Working and Material Science, 26(3), 5265. [CrossRef]
  • [16] Somatkar, A., Dwivedi, R., & Chinchanikar, S. (2024). Comparative evaluation of roller burnishing of Al6061-T6 alloy under dry and nanofluid minimum quantity lubrication conditions. Obrabotka Metallov/Metal Working and Material Science, 26(4), 5774. [CrossRef]
  • [17] Hashemitaheri, M., Mekarthy, S. M. R., & Cherukuri, H. (2020). Prediction of specific cutting forces and maximum tool temperatures in orthogonal machining by support vector and Gaussian process regression methods. Procedia Manufacturing, 48, 1000–1008. [CrossRef]
  • [18] Klippel, H., Sanchez, E. G., Isabel, M., Röthlin, M., Afrasiabi, M., Michal, K., & Wegener, K. (2022). Cutting force prediction of Ti6Al4V using a machine learning model of SPH orthogonal cutting process simulations. Journal of Machine Engineering, 22(1), 111–123. [CrossRef]
  • [19] Karasu, S., Altan, A., Saraç, Z., & Hacioğlu, R. (2018). Prediction of Bitcoin prices with machine learning methods using time series data. In 2018 26th signal processing and communications applications conference (SIU) (pp. 14). IEEE. [CrossRef]
  • [20] Jierula, A., Wang, S., OH, T.-M., & Wang, P. (2021). Study on accuracy metrics for evaluating the predictions of damage locations in deep piles using artificial neural networks with acoustic emission data. Applied Sciences, 11(5), 2314. [CrossRef]
  • [21] Wang Y, Xu C, Wang Z, Zhang S, Zhu Y, Yuan J (2018) Time series modeling of pertussis incidence in China from 2004 to 2018 with a novel wavelet based SARIMA-NAR hybrid model. PLoS One, 13(12), e0208404. [CrossRef]
  • [22] Çınaroğlu, S. (2017). Comparison of machine learning regression methods to predict health expenditures. Uludag Universitesi Mühendislik Fakültesi Dergisi, 22(2), 179200.
  • [23] Ross, S. M. (2017). Chapter 8-Estimation. In S. M. Ross, (Ed.), Introductory Statistics (4th ed., pp. 329380). Academic Press. [CrossRef]
  • [24] Boy, M. (2004). Kesme parametrelerine bağlı olarak talaş arka yüzey sıcaklığının deneysel olarak incelenmesi [Yüksek Lisans Tezi]. Gazi Üniversitesi. [Turkish]
  • [25] Chen, C. S., & Jeng, Y. (2015). A data-driven multidimensional signal-noise decomposition approach for GPR data processing. Computers & Geosciences, 85, 164174. [CrossRef]
There are 26 citations in total.

Details

Primary Language English
Subjects Manufacturing and Industrial Engineering (Other)
Journal Section Research Article
Authors

Kadir Özdemir

Ulvi Şeker

Mustafa Cemal Çakır

Submission Date March 22, 2025
Acceptance Date July 24, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 6 Issue: 2

Cite

APA Özdemir, K., Şeker, U., & Çakır, M. C. (2025). Cutting force estimation in turning of AISI 1117 free-cutting steel using machine learning algorithms. Journal of Advances in Manufacturing Engineering, 6(2), 56-67.
AMA Özdemir K, Şeker U, Çakır M C. Cutting force estimation in turning of AISI 1117 free-cutting steel using machine learning algorithms. J Adv Manuf Eng. December 2025;6(2):56-67.
Chicago Özdemir, Kadir, Ulvi Şeker, and Mustafa Cemal Çakır. “Cutting Force Estimation in Turning of AISI 1117 Free-Cutting Steel Using Machine Learning Algorithms”. Journal of Advances in Manufacturing Engineering 6, no. 2 (December 2025): 56-67.
EndNote Özdemir K, Şeker U, Çakır M C (December 1, 2025) Cutting force estimation in turning of AISI 1117 free-cutting steel using machine learning algorithms. Journal of Advances in Manufacturing Engineering 6 2 56–67.
IEEE K. Özdemir, U. Şeker, and M. C. Çakır, “Cutting force estimation in turning of AISI 1117 free-cutting steel using machine learning algorithms”, J Adv Manuf Eng, vol. 6, no. 2, pp. 56–67, 2025.
ISNAD Özdemir, Kadir et al. “Cutting Force Estimation in Turning of AISI 1117 Free-Cutting Steel Using Machine Learning Algorithms”. Journal of Advances in Manufacturing Engineering 6/2 (December2025), 56-67.
JAMA Özdemir K, Şeker U, Çakır M C. Cutting force estimation in turning of AISI 1117 free-cutting steel using machine learning algorithms. J Adv Manuf Eng. 2025;6:56–67.
MLA Özdemir, Kadir et al. “Cutting Force Estimation in Turning of AISI 1117 Free-Cutting Steel Using Machine Learning Algorithms”. Journal of Advances in Manufacturing Engineering, vol. 6, no. 2, 2025, pp. 56-67.
Vancouver Özdemir K, Şeker U, Çakır M C. Cutting force estimation in turning of AISI 1117 free-cutting steel using machine learning algorithms. J Adv Manuf Eng. 2025;6(2):56-67.