Research Article
BibTex RIS Cite

Year 2025, Volume: 6 Issue: 1, 22 - 32, 30.06.2025
https://doi.org/10.14744/ytu.jame.2025.00004

Abstract

References

  • REFERENCES
  • [1] ISO/ASTM International (2022). ISO/ASTM 52900-21: Additive manufacturing — General principles — Fundamentals and vocabulary. ISO/ASTM International.
  • [2] ISO/ASTM International (2020). ISO/ASTM 52903-1:2020(E): Additive manufacturing — Material extrusion-based additive manufacturing of plastic materials — Part 1: Feedstock materials. ISO/ASTM International.
  • [3] Simon, Ž., Stojcevski, F., Dharmasiri, B., Amini, N,. Stojcevski, F., & Henderson, C. L. (2024). Circular economy-driven additive manufacturing: A model for recycling PLA/copper composites through multi-extrusion processing. Journal of Industrial and Engineering Chemistry, 130, 392–400. [CrossRef]
  • [4] Altıparmak SC, Daminabo SIC (2024). Suitability analysis for extrusion-based additive manufacturing process. Additive Manufacturing Frontiers, 3, Article 200106. [CrossRef]
  • [5] Kartal, F., & Kaptan, A. (2023). Experimental determination of the optimum cutting tool for CNC milling of 3D printed PLA parts. International Journal of 3D Printing Technologies and Digital Industry, 7, 150–160. [CrossRef]
  • [6] Golubovic, Z., Bojovic, B., Petrov, L., Milovanovic, A., Milosevic, M., Bojovic, B., Sedmak, A., & Miskovic, Z. (2024). Comparative analysis of ABS materials mechanical properties. In: Procedia Structural Integrity (pp. 153–159). Elsevier B.V. [CrossRef]
  • [7] Pour, R. H., Hassan, A., Soheilmoghaddam, M., & Bidsorkhi, H. C. (2016). Mechanical, thermal, and morphological properties of graphene-reinforced polycarbonate/acrylonitrile butadiene styrene nanocomposites. Polymer Composites, 37, 1633–1640. [CrossRef]
  • [8] Kuczynski, J., Snyder, R. W., & Podolak, P. P. (1994). Physical property retention of PC/ABS blends. Polymer Degradation and Stability, 43, 285–291. [CrossRef]
  • [9] Zhang, W., & Xu, Y. (2019). Mechanical properties of polycarbonate: Experiment and modeling for aeronautical and aerospace applications. 1st ed. Elsevier.
  • [10] Utracki, L. A. (2002). Polymer blends handbook. Kluwer Academic Publishers. [CrossRef]
  • [11] Choi, H. J., Park, S. H., Kim, K., & Jun, J. I. (2000). Effects of acrylonitrile content on PC/ABS alloy systems with a flame retardant. Journal of Applied Polymer Science, 75, 417–423. [CrossRef]
  • [12] Balakrishnan, S., & Neelakantan, N. R. (1998). Mechanical properties of blends of polycarbonate with unmodified and maleic anhydride grafted ABS. Polymer International, 45, 347–352. [CrossRef]
  • [13] Fang, Q. Z., Wang, T. J., & Li, H. M. (2006). Large tensile deformation behavior of PC/ABS alloy. Polymer (Guildford), 47, 5174–5181. [CrossRef]
  • [14] Seelig, T., & Van der Giessen, E. (2002). Localized plastic deformation in ternary polymer blends. International Journal of Solids and Structures, 39, 3505–3522. [CrossRef]
  • [15] Raj, M. M. (2014). Studies on mechanical properties of PC-ABS blends. Journal of Applied Sciences and Engineering Research, 3(2), 512–518.
  • [16] Alonso, U., Goirigolzarri, B., Ostra, T., & De Lacalle, L. N. L. (2019). Low frequency vibration assisted drilling of PC1000 polycarbonate. Procedia Manufacturing, 41, 407–414. [CrossRef]
  • [17] Srinivasan, T., Palanikumar, K., & Rajagopal, K. (2014). Influence of thrust force in drilling of glass fiber reinforced polycarbonate (GFR/PC) thermoplastic matrix composites using Box-Behnken design. Procedia Materials Science, 5, 2152–2158. [CrossRef]
  • [18] Abdulwahab, A. E., Hubeatir, K. A., & Imhan, K. I. (2022). A comparative study on the effect of CO2 laser parameters on drilling process of polycarbonate and PMMA polymers complemented by design expert. Engineering Research Express, 4(4), Article 045029. [CrossRef]
  • [19] Szot, W., & Rudnik, M. (2024). Effect of the number of shells on selected mechanical properties of parts manufactured by FDM/FFF technology. Advances in Materials Science, 24(1), 86–103. [CrossRef]
  • [20] Qamar Tanveer M, Mishra G, Mishra S, Sharma R (2022). Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed parts — a current review. Materials Today: Proceedings, 62, 100–108. [CrossRef]
  • [21] Yazdani Sarvestani, H., Akbarzadeh, A. H., Mirbolghasemi, A., & Hermenean, K. (2018). 3D printed meta- sandwich structures: Failure mechanism, energy absorption and multi-hit capability. Materials & Design, 160, 179–193. [CrossRef]
  • [22] Charekhli-Inanllo, M., & Mohammadimehr, M. (2023). The effect of various shape core materials by FDM on low velocity impact behavior of a sandwich composite plate. Engineering Structures, 294, Article 116721. [CrossRef]
  • [23] Mirzaei, J., Niyaraki, M. N., & Nikouei, S. M. (2025). Mechanical characteristics of 3D-printed honeycomb sandwich structures: Effect of skin material and core orientation. Polymer Composites. Preprint. https://doi.org/10.1002/pc.29610 [CrossRef]
  • [24] Khoran, M., Ghabezi, P., Frahani, M., & Besharati, M. K. (2015). Investigation of drilling composite sandwich structures. International Journal of Advanced Manufacturing Technology, 76, 1927–1936. [CrossRef]
  • [25] Ang, M., Konstantopoulo, A., Goh, G., Htoon, H. M., Seah, X., Lwin, N. C., Liu, X., Chen, S., Liu, L., & Mehta, J. S. (2016). Evaluation of a micro-optical coherence tomography for the corneal endothelium in an animal model. Scientific Reports, 6, Article 29769. [CrossRef]
  • [26] Kanatani, K., & Rangarajan, P. (2011). Hyper least squares fitting of circles and ellipses. Computational Statistics & Data Analysis, 55, 2197–2208. [CrossRef]
  • [27] Van Rossum, G., & Drake, F. (2009). Python 3 Reference Manual. CreateSpace, Scotts Valley, CA.
  • [28] Lotfi, A., Li, H., & Dao, D. V. (2019). Machinability analysis in drilling flax fiber-reinforced polylactic acid bio-composite laminates. Int Scholar Scientif Res Innov, 13(9), 443–447.
  • [29] Krishnamoorthy, A., Boopathy, S. R., & Palanikumar, K. (2009). Delamination analysis in drilling of CFRP composites using response surface methodology. Journal of Composite Materials, 43, 2885–2902. [CrossRef]
  • [30] Endo, H., & Marui, E. (2006). Small-hole drilling in engineering plastics sheet and its accuracy estimation. International Journal of Machine Tools and Manufacture, 46, 575–579. [CrossRef]
  • [31] Ameur, M. F., Habak, M., Kenane, M., Aouici, H., & Cheikh, M. (2017). Machinability analysis of dry drilling of carbon/epoxy composites: Cases of exit delamination and cylindricity error. International Journal of Advanced Manufacturing Technology, 88, 2557–2571. [CrossRef]
  • [32] Maoinser, M. A., Ahmad, F., & Sharif, S. (2014). Effects of cutting parameters on hole integrity when drilling GFRP and HFRP composites. Advanced Materials Research, 845, 960–965. [CrossRef]
  • [33] Pachappareddy, C., Padhy, C. P., & Pendyala, S. (2025). An experimental investigation on delamination factor and thrust force evaluation of kenaf fiber and acacia concinna filler reinforced epoxy hybrid composites. Green Technologies and Sustainability, 3, Article 100164. [CrossRef]

Drilling optimisation for additively manufactured PC/ABS parts: Effects of shell layer count in the MEX process

Year 2025, Volume: 6 Issue: 1, 22 - 32, 30.06.2025
https://doi.org/10.14744/ytu.jame.2025.00004

Abstract

Although additive manufacturing enables near-final geometries, dimensional accuracy varies due to design and process factors. Features exceeding the critical angle may experience unavoidable distortions, even with support structures. To ensure precision in critical holes, it may be preferable to manufacture the main structure without holes and perform drilling as a secondary machining process. This study investigates the effect of shell layer count on the drilling performance of PC/ABS parts produced via Material Extrusion (MEX). Samples with three different shell counts and 50% infill were manufactured, and drilling was performed at varying feed rates and spindle speeds. Hole diameters and cylindricity were measured using a coordinate measuring machine (CMM), and delamination was analysed through stereo microscope imaging. Results indicate that diameter deviation increases with feed rate and decreases with spindle speed, while shell count has no significant effect. Cylindricity worsens with higher feed rates, but no clear correlation was found with spindle speed or shell count. Delamination remained low at 4 and 8 shell layers but increased significantly at 12. Based on findings, 4 or 8 shell layers and drilling at 50 mm/min feed rate and 1200 rpm spindle speed are recommended for optimal results.

Ethical Statement

There are no ethical issues with the publication of this manuscript.

Supporting Institution

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  • REFERENCES
  • [1] ISO/ASTM International (2022). ISO/ASTM 52900-21: Additive manufacturing — General principles — Fundamentals and vocabulary. ISO/ASTM International.
  • [2] ISO/ASTM International (2020). ISO/ASTM 52903-1:2020(E): Additive manufacturing — Material extrusion-based additive manufacturing of plastic materials — Part 1: Feedstock materials. ISO/ASTM International.
  • [3] Simon, Ž., Stojcevski, F., Dharmasiri, B., Amini, N,. Stojcevski, F., & Henderson, C. L. (2024). Circular economy-driven additive manufacturing: A model for recycling PLA/copper composites through multi-extrusion processing. Journal of Industrial and Engineering Chemistry, 130, 392–400. [CrossRef]
  • [4] Altıparmak SC, Daminabo SIC (2024). Suitability analysis for extrusion-based additive manufacturing process. Additive Manufacturing Frontiers, 3, Article 200106. [CrossRef]
  • [5] Kartal, F., & Kaptan, A. (2023). Experimental determination of the optimum cutting tool for CNC milling of 3D printed PLA parts. International Journal of 3D Printing Technologies and Digital Industry, 7, 150–160. [CrossRef]
  • [6] Golubovic, Z., Bojovic, B., Petrov, L., Milovanovic, A., Milosevic, M., Bojovic, B., Sedmak, A., & Miskovic, Z. (2024). Comparative analysis of ABS materials mechanical properties. In: Procedia Structural Integrity (pp. 153–159). Elsevier B.V. [CrossRef]
  • [7] Pour, R. H., Hassan, A., Soheilmoghaddam, M., & Bidsorkhi, H. C. (2016). Mechanical, thermal, and morphological properties of graphene-reinforced polycarbonate/acrylonitrile butadiene styrene nanocomposites. Polymer Composites, 37, 1633–1640. [CrossRef]
  • [8] Kuczynski, J., Snyder, R. W., & Podolak, P. P. (1994). Physical property retention of PC/ABS blends. Polymer Degradation and Stability, 43, 285–291. [CrossRef]
  • [9] Zhang, W., & Xu, Y. (2019). Mechanical properties of polycarbonate: Experiment and modeling for aeronautical and aerospace applications. 1st ed. Elsevier.
  • [10] Utracki, L. A. (2002). Polymer blends handbook. Kluwer Academic Publishers. [CrossRef]
  • [11] Choi, H. J., Park, S. H., Kim, K., & Jun, J. I. (2000). Effects of acrylonitrile content on PC/ABS alloy systems with a flame retardant. Journal of Applied Polymer Science, 75, 417–423. [CrossRef]
  • [12] Balakrishnan, S., & Neelakantan, N. R. (1998). Mechanical properties of blends of polycarbonate with unmodified and maleic anhydride grafted ABS. Polymer International, 45, 347–352. [CrossRef]
  • [13] Fang, Q. Z., Wang, T. J., & Li, H. M. (2006). Large tensile deformation behavior of PC/ABS alloy. Polymer (Guildford), 47, 5174–5181. [CrossRef]
  • [14] Seelig, T., & Van der Giessen, E. (2002). Localized plastic deformation in ternary polymer blends. International Journal of Solids and Structures, 39, 3505–3522. [CrossRef]
  • [15] Raj, M. M. (2014). Studies on mechanical properties of PC-ABS blends. Journal of Applied Sciences and Engineering Research, 3(2), 512–518.
  • [16] Alonso, U., Goirigolzarri, B., Ostra, T., & De Lacalle, L. N. L. (2019). Low frequency vibration assisted drilling of PC1000 polycarbonate. Procedia Manufacturing, 41, 407–414. [CrossRef]
  • [17] Srinivasan, T., Palanikumar, K., & Rajagopal, K. (2014). Influence of thrust force in drilling of glass fiber reinforced polycarbonate (GFR/PC) thermoplastic matrix composites using Box-Behnken design. Procedia Materials Science, 5, 2152–2158. [CrossRef]
  • [18] Abdulwahab, A. E., Hubeatir, K. A., & Imhan, K. I. (2022). A comparative study on the effect of CO2 laser parameters on drilling process of polycarbonate and PMMA polymers complemented by design expert. Engineering Research Express, 4(4), Article 045029. [CrossRef]
  • [19] Szot, W., & Rudnik, M. (2024). Effect of the number of shells on selected mechanical properties of parts manufactured by FDM/FFF technology. Advances in Materials Science, 24(1), 86–103. [CrossRef]
  • [20] Qamar Tanveer M, Mishra G, Mishra S, Sharma R (2022). Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed parts — a current review. Materials Today: Proceedings, 62, 100–108. [CrossRef]
  • [21] Yazdani Sarvestani, H., Akbarzadeh, A. H., Mirbolghasemi, A., & Hermenean, K. (2018). 3D printed meta- sandwich structures: Failure mechanism, energy absorption and multi-hit capability. Materials & Design, 160, 179–193. [CrossRef]
  • [22] Charekhli-Inanllo, M., & Mohammadimehr, M. (2023). The effect of various shape core materials by FDM on low velocity impact behavior of a sandwich composite plate. Engineering Structures, 294, Article 116721. [CrossRef]
  • [23] Mirzaei, J., Niyaraki, M. N., & Nikouei, S. M. (2025). Mechanical characteristics of 3D-printed honeycomb sandwich structures: Effect of skin material and core orientation. Polymer Composites. Preprint. https://doi.org/10.1002/pc.29610 [CrossRef]
  • [24] Khoran, M., Ghabezi, P., Frahani, M., & Besharati, M. K. (2015). Investigation of drilling composite sandwich structures. International Journal of Advanced Manufacturing Technology, 76, 1927–1936. [CrossRef]
  • [25] Ang, M., Konstantopoulo, A., Goh, G., Htoon, H. M., Seah, X., Lwin, N. C., Liu, X., Chen, S., Liu, L., & Mehta, J. S. (2016). Evaluation of a micro-optical coherence tomography for the corneal endothelium in an animal model. Scientific Reports, 6, Article 29769. [CrossRef]
  • [26] Kanatani, K., & Rangarajan, P. (2011). Hyper least squares fitting of circles and ellipses. Computational Statistics & Data Analysis, 55, 2197–2208. [CrossRef]
  • [27] Van Rossum, G., & Drake, F. (2009). Python 3 Reference Manual. CreateSpace, Scotts Valley, CA.
  • [28] Lotfi, A., Li, H., & Dao, D. V. (2019). Machinability analysis in drilling flax fiber-reinforced polylactic acid bio-composite laminates. Int Scholar Scientif Res Innov, 13(9), 443–447.
  • [29] Krishnamoorthy, A., Boopathy, S. R., & Palanikumar, K. (2009). Delamination analysis in drilling of CFRP composites using response surface methodology. Journal of Composite Materials, 43, 2885–2902. [CrossRef]
  • [30] Endo, H., & Marui, E. (2006). Small-hole drilling in engineering plastics sheet and its accuracy estimation. International Journal of Machine Tools and Manufacture, 46, 575–579. [CrossRef]
  • [31] Ameur, M. F., Habak, M., Kenane, M., Aouici, H., & Cheikh, M. (2017). Machinability analysis of dry drilling of carbon/epoxy composites: Cases of exit delamination and cylindricity error. International Journal of Advanced Manufacturing Technology, 88, 2557–2571. [CrossRef]
  • [32] Maoinser, M. A., Ahmad, F., & Sharif, S. (2014). Effects of cutting parameters on hole integrity when drilling GFRP and HFRP composites. Advanced Materials Research, 845, 960–965. [CrossRef]
  • [33] Pachappareddy, C., Padhy, C. P., & Pendyala, S. (2025). An experimental investigation on delamination factor and thrust force evaluation of kenaf fiber and acacia concinna filler reinforced epoxy hybrid composites. Green Technologies and Sustainability, 3, Article 100164. [CrossRef]
There are 34 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors, Mechanical Engineering (Other), Manufacturing Processes and Technologies (Excl. Textiles), Optimization in Manufacturing
Journal Section Research Articles
Authors

Fırat Mavi 0000-0001-6893-2582

Kemal Ayan 0000-0002-2181-1350

Nail Aslan 0000-0002-3311-4608

Sırrı Can Polat 0000-0003-4538-8785

İbrahim Etem Saklakoğlu 0000-0002-4176-685X

Nurşen Saklakoğlu 0000-0002-6651-7542

Publication Date June 30, 2025
Submission Date March 2, 2025
Acceptance Date May 21, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Mavi, F., Ayan, K., Aslan, N., … Polat, S. C. (2025). Drilling optimisation for additively manufactured PC/ABS parts: Effects of shell layer count in the MEX process. Journal of Advances in Manufacturing Engineering, 6(1), 22-32. https://doi.org/10.14744/ytu.jame.2025.00004
AMA Mavi F, Ayan K, Aslan N, Polat SC, Saklakoğlu İE, Saklakoğlu N. Drilling optimisation for additively manufactured PC/ABS parts: Effects of shell layer count in the MEX process. J Adv Manuf Eng. June 2025;6(1):22-32. doi:10.14744/ytu.jame.2025.00004
Chicago Mavi, Fırat, Kemal Ayan, Nail Aslan, Sırrı Can Polat, İbrahim Etem Saklakoğlu, and Nurşen Saklakoğlu. “Drilling Optimisation for Additively Manufactured PC ABS Parts: Effects of Shell Layer Count in the MEX Process”. Journal of Advances in Manufacturing Engineering 6, no. 1 (June 2025): 22-32. https://doi.org/10.14744/ytu.jame.2025.00004.
EndNote Mavi F, Ayan K, Aslan N, Polat SC, Saklakoğlu İE, Saklakoğlu N (June 1, 2025) Drilling optimisation for additively manufactured PC/ABS parts: Effects of shell layer count in the MEX process. Journal of Advances in Manufacturing Engineering 6 1 22–32.
IEEE F. Mavi, K. Ayan, N. Aslan, S. C. Polat, İ. E. Saklakoğlu, and N. Saklakoğlu, “Drilling optimisation for additively manufactured PC/ABS parts: Effects of shell layer count in the MEX process”, J Adv Manuf Eng, vol. 6, no. 1, pp. 22–32, 2025, doi: 10.14744/ytu.jame.2025.00004.
ISNAD Mavi, Fırat et al. “Drilling Optimisation for Additively Manufactured PC ABS Parts: Effects of Shell Layer Count in the MEX Process”. Journal of Advances in Manufacturing Engineering 6/1 (June2025), 22-32. https://doi.org/10.14744/ytu.jame.2025.00004.
JAMA Mavi F, Ayan K, Aslan N, Polat SC, Saklakoğlu İE, Saklakoğlu N. Drilling optimisation for additively manufactured PC/ABS parts: Effects of shell layer count in the MEX process. J Adv Manuf Eng. 2025;6:22–32.
MLA Mavi, Fırat et al. “Drilling Optimisation for Additively Manufactured PC ABS Parts: Effects of Shell Layer Count in the MEX Process”. Journal of Advances in Manufacturing Engineering, vol. 6, no. 1, 2025, pp. 22-32, doi:10.14744/ytu.jame.2025.00004.
Vancouver Mavi F, Ayan K, Aslan N, Polat SC, Saklakoğlu İE, Saklakoğlu N. Drilling optimisation for additively manufactured PC/ABS parts: Effects of shell layer count in the MEX process. J Adv Manuf Eng. 2025;6(1):22-3.