Research Article
BibTex RIS Cite

Year 2025, Volume: 6 Issue: 2, 106 - 116, 29.06.2025
https://doi.org/10.56430/japro.1662391

Abstract

Project Number

KÜBAP01/2020-09

References

  • Aguilera, P. A., Frenich, A. G., Torres, J. A., Castro, H., Vidal, J. M., & Canton, M. (2001). Application of the Kohonen neural network in coastal water management: Methodological development for the assessment and prediction of water quality. Water Research, 35(17), 4053-4062. https://doi.org/10.1016/S0043-1354(01)00151-8
  • Arslan, G., Kale, S., & Sönmez, A. Y. (2020). Trend analysis and forecasting of the Gökırmak River streamflow (Turkey). Oceanological and Hydrobiological Studies, 49(3), 230-246. https://doi.org/10.1515/ohs-2020-0021
  • Ayers, R., S., & Westcot, D. W. (1985). Water quality for agriculture. FAO Irrigation and Drainage Paper. https://www.fao.org/4/t0234e/T0234E00.htm#TOC
  • Back, J. O., Rivett, M. O., Hinz, L. B., Mackay, N., Wanangwa, G. J., Phiri, O. L., Songola, C. E., Thomas, M. A. S., Kumwenda, S., Nhlema, M., Miller, A. V. M., & Kalin, R. M. (2018). Risk assessment to groundwater of pit latrine rural sanitation policy in developing country settings. Science of The Total Environment, 613-614, 592-610. https://doi.org/10.1016/j.scitotenv.2017.09.071
  • Baduna Koçyiğit, M., Akay, H., & Yanmaz, A. M. (2017). Effect of watershed partitioning on hydrologic parameters and estimation of hydrograph of an ungauged basin: A case study in Gokirmak and Kocanaz, Turkey. Arabian Journal of Geosciences, 10, 331. https://doi.org/10.1007/s12517-017-3132-8
  • Banda, T. D., & Kumarasamy, M. (2024). Artificial neural network (ANN)-based water quality index (WQI) for assessing spatiotemporal trends in surface water quality—A case study of South African River Basins. Water, 16(11), 1485. https://doi.org/10.3390/w16111485
  • Behmel, S., Damour, M., Ludwig, R., & Rodriguez, M. J. (2016). Water quality monitoring strategies — a review and future perspectives. Science of The Total Environment, 571, 1312-1329. https://doi.org/10.1016/j.scitotenv.2016.06.235
  • Benzer, S., & Benzer, R. (2018). Modelling nitrate prediction of groundwater and surface water using artificial neural networks. Politeknik Dergisi, 21(2), 321-325. https://doi.org/10.2339/politeknik.385434
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
  • Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Wadsworth.
  • Chen, Y., Song, L., Liu, Y., Yang, L., & Li, D. (2020). A review of the artificial neural network models for water quality prediction. Applied Sciences, 10(17), 5776. https://doi.org/10.3390/app10175776
  • Darwishe, H., Khattabi, J. E., Chaaban, F., Louche, B., Masson, E., & Carlier, E. (2017). Prediction and control of nitrate concentrations in groundwater by implementing a model based on GIS and artificial neural networks (ANN). Environmental Earth Sciences, 76, 649. https://doi.org/10.1007/s12665-017-6990-1
  • Davies, O. A., Abolude, D. S., & Ugwumba, A. A. A. (2008). Phytoplankton of the lower reaches of Okpoka Creek, Port Harcourt, Nigeria. Journal of Fisheries International, 3(3), 83-90.
  • Dengiz, O., Özyazici, M. A., & Sağlam, M. (2015). Multi-criteria assessment and geostatistical approach for determination of rice growing suitability sites in Gokirmak catchment. Paddy and Water Environment, 13(1), 1-10. https://doi.org/10.1007/s10333-013-0400-4
  • EPA. (2020). Nitrates. https://archive.epa.gov/water/archive/web/html/vms57.html
  • Garcet, J. P., Ordonez, A., Roosen, J., & Vanclooster, M. (2006). Metamodelling: Theory, concepts and application to nitrate leaching modelling. Ecological Modelling, 193(3-4), 629-644. https://doi.org/10.1016/j.ecolmodel.2005.08.045
  • Halecki, W., Kruk, E., & Ryczek, M. (2018). Estimations of nitrate nitrogen, total phosphorus flux and suspended sediment concentration (SSC) as indicators of surface-erosion processes using an ANN (artificial neural network) based on geomorphological parameters in mountainous catchments. Ecological Indicators, 91, 461-469. https://doi.org/10.1016/j.ecolind.2018.03.072
  • Hrnjica, B., Mehr, A. D., Jakupović, E., Crnkić, A., & Hasanagić, R. (2021). Application of deep learning neural networks for nitrate prediction in the Klokot River, Bosnia and Herzegovina. 7th International Conference on Control, Instrumentation and Automation (ICCIA). Tabriz. https://doi.org/10.1109/ICCIA52082.2021.9403565
  • Hu, J., Chen, X., Chen, Y., Li, C., Ren, M., Jiang, C., Chen, Y., An, S., Xu, Y., & Zheng, L. (2021). Nitrate sources and transformations in surface water of a mining area due to intensive mining activities: Emphasis on effects on distinct subsidence waters. Journal of Environmental Management, 298, 113451. https://doi.org/10.1016/j.jenvman.2021.113451
  • İleri, S., Karaer, F., Katip, A., Onur, S. S., & Aksoy, E. (2014). Assessment of some pollution parameters with geographic information system (GIS) in sediment samples of Lake Uluabat, Turkey. Journal of Biological and Environmental Sciences, 8(22), 19-28.
  • Isık, H., & Akkan, T. (2025). Water quality assessment with artificial neural network models: Performance comparison between SMN, MLP and PS-ANN methodologies. Arabian Journal for Science and Engineering, 50, 369-387 https://doi.org/10.1007/s13369-024-09238-5
  • John, V., Jain, P., Rahate, M., & Labhasetwar, P. (2014). Assessment of deterioration in water quality from source to household storage in semi-urban settings of developing countries. Environmental Monitoring and Assessment, 186, 725-734. https://doi.org/10.1007/s10661-013-3412-z
  • Kale, S. (2020). Development of an adaptive neuro-fuzzy inference system (ANFIS) model to predict sea surface temperature (SST). Oceanological and Hydrobiological Studies, 49(4), 354-373, https://doi.org/10.1515/ohs-2020-0031
  • Kazi, T. G., Arain, M. B., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., Baig, J. A., & Shah, A. Q. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicology and Environmental Safety, 72(2), 301-309. https://doi.org/10.1016/j.ecoenv.2008.02.024
  • Kim, J., Seo, D., Jang, M., & Kim, J. (2021). Augmentation of limited input data using an artificial neural network method to improve the accuracy of water quality modeling in a large lake. Journal of Hydrology, 602, 126817. https://doi.org/10.1016/j.jhydrol.2021.126817
  • Kumar, P., Lai, S. H., Mohd, N. S., Kamal, M. R., Afan, H. A., Ahmed, A. N., Sherif, M., & Sefelnasr, A. (2020). Optimised neural network model for river-nitrogen prediction utilizing a new training approach. PLOS One, 15(9), e0239509. https://doi.org/10.1371/journal.pone.0239509
  • Kunkel, R., Kreins, P., Tetzlaff, B., & Wendland, F. (2010). Forecasting the effects of EU policy measures on the nitrate pollution of groundwater and surface waters. Journal of Environmental Sciences, 22(6), 872-877. https://doi.org/10.1016/s1001-0742(09)60191-1
  • Latif, S. D., Azmi, M. S. B. N., Ahmed, A. N., Fai, C. M., & El-Shafie, A. (2020). Application of artificial neural network for forecasting nitrate concentration as a water quality parameter: A case study of Feitsui Reservoir, Taiwan. International Journal of Design & Nature and Ecodynamics, 15(5), 647-652. https://doi.org/10.18280/ijdne.150505
  • Lawniczak, A. E., Zbierska, J., Nowak, B., Achtenberg, K., Grześkowiak, A., & Kanas, K. (2016). Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environmental Monitoring and Assessment, 188, 172. https://doi.org/10.1007/s10661-016-5167-9
  • Mahlknecht, J., Torres-Martínez, J. A., Kumar, M., Mora, A., Kaown, D., & Loge, F. J. (2023). Nitrate prediction in groundwater of data scarce regions: The futuristic fresh-water management outlook. Science of The Total Environment, 905, 166863. https://doi.org/10.1016/j.scitotenv.2023.166863
  • Meng, G., Fang, L., Yin, Y., Zhang, Z., Li, T., Chen, P., Liu, Y., & Zhang, L. (2022). Intelligent control of the electrochemical nitrate removal basing on artificial neural network (ANN). Journal of Water Process Engineering, 49, 103122. https://doi.org/10.1016/j.jwpe.2022.103122
  • Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to linear regression analysis. Wiley.
  • Najah, A., El-Shafie, A., Karim, O. A., & El-Shafie, A. H. (2013). Application of artificial neural networks for water quality prediction. Neural Computing and Applications, 22(Suppl 1), 187-201. https://doi.org/10.1007/s00521-012-0940-3
  • O’Shea, L., & Wade, A. (2009). Controlling nitrate pollution: An integrated approach. Land Use Policy, 26(3), 799-808. https://doi.org/10.1016/j.landusepol.2008.10.017
  • Ostad-Ali-Askari, K., Shayannejad, M., & Ghorbanizadeh-Kharazi, H. (2017). Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan, Iran. KSCE Journal of Civil Engineering, 21(1), 134-140. https://doi.org/10.1007/s12205-016-0572-8
  • Palabıyık, S., & Akkan, T. (2024). Evaluation of water quality based on artificial intelligence: Performance of multilayer perceptron neural networks and multiple linear regression versus water quality indexes. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-024-05075-6
  • Palani, S., Liong, S. Y., & Tkalich, P. (2008). An ANN application for water quality forecasting. Marine Pollution Bulletin, 56(9), 1586-1597. https://doi.org/10.1016/j.marpolbul.2008.05.021
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brocher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825-2830.
  • Peña-Haro, S., Pulido-Velazquez, M., & Sahuquillo, A. (2010). A hydro-economic modelling framework for optimal management of groundwater nitrate pollution from agriculture. Journal of Hydrology, 373(1-2), 193-203. https://doi.org/10.1016/j.jhydrol.2009.04.024
  • Ransom, K. M., Nolan, B. T., Stackelberg, P. E., Belitz, K., & Fram, M. S. (2022). Machine learning predictions of nitrate in groundwater used for drinking supply in the conterminous United States. Science of The Total Environment, 807(Part 3), 151065. https://doi.org/10.1016/j.scitotenv.2021.151065
  • Satish, N., Anmala, J., Rajitha, K., & Varma, M. R. (2024). A stacking ANN ensemble model of ML models for stream water quality prediction of Godavari River Basin, India. Ecological Informatics, 80, 102500. https://doi.org/10.1016/j.ecoinf.2024.102500
  • Şengörür, B., & Öz, C. (2002). Determination of the effects of water pollution of aquacultures using neural networks. Turkish Journal of Engineering and Environmental Sciences, 26(2), 95-106.
  • Shukla, S., & Saxena, A. (2018). Global status of nitrate contamination in groundwater: Its occurrence, health impacts, and mitigation measures. In C. Hussain (Ed.), Handbook of environmental materials management (pp. 1-21). Springer. https://doi.org/10.1007/978-3-319-58538-3_20-1
  • Singh, K. P., Basant, A., Malik, A., & Jain, G. (2009). Artificial neural network modeling of the river water quality—A case study. Ecological Modelling, 220(6), 888-895. https://doi.org/10.1016/j.ecolmodel.2009.01.004
  • Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199-222. https://doi.org/10.1023/B:STCO.0000035301.49549.88
  • Sonmez, A. Y., Kale, S., Ozdemir, R. C., & Kadak, A. E. (2018). An adaptive neuro-fuzzy inference system (ANFIS) to predict of cadmium (Cd) concentrations in the Filyos River, Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 18(12), 1333-1343, https://doi.org/10.4194/1303-2712-v18_12_01
  • Stamenković, L. J., Kurilić, S. M., & Ulniković, V. P. (2020). Prediction of nitrate concentration in Danube River water by using artificial neural networks. Water Supply, 20(6), 2119-2132. https://doi.org/10.2166/ws.2020.104
  • Stylianoudaki, C., Trichakis, I., & Karatzas, G. P. (2022). Modeling groundwater nitrate contamination using artificial neural networks. Water, 14(7), 1173. https://doi.org/10.3390/w14071173
  • Suen, J. P., & Eheart, J. W. (2003). Evaluation of neural networks for modeling nitrate concentrations in rivers. Journal of Water Resources Planning and Management, 129(6), 505-510. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:6(505)
  • Tanatmış, M. (2004). Gökırmak Nehir Havzası (Kastamonu) ile Cide (Kastamonu) - Ayancık (Sinop) arası sahil bölgesinin Ephemeroptera (Insecta) faunası. Türk Entomoloji Dergisi, 28(1), 45-56. (In Turkish)
  • Wagh, V. M., Panaskar, D. B., & Muley, A. A. (2017). Estimation of nitrate concentration in groundwater of Kadava river basin-Nashik district, Maharashtra, India by using artificial neural network model. Modeling Earth Systems and Environment, 3, 36. https://doi.org/10.1007/s40808-017-0290-3
  • Wagh, V., Panaskar, D., Muley, A., Mukate, S., & Gaikwad, S. (2018). Neural network modelling for nitrate concentration in groundwater of Kadava River basin, Nashik, Maharashtra, India. Groundwater for Sustainable Development, 7, 436-445. https://doi.org/10.1016/j.gsd.2017.12.012
  • Wakejo, W. K., Meshesha, B. T., Habtu, N. G., & Mekonnen, Y. G. (2022). Anthropogenic nitrate contamination of water resources in Ethiopia: An overview. Water Supply, 22(11), 8157-8172. https://doi.org/10.2166/ws.2022.377
  • Wang, Y., Zhou, J., Chen, K., Wang, Y., & Liu, L. (2017). Water quality prediction method based on LSTM neural network. 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE). Nanjing. https://doi.org/10.1109/ISKE.2017.8258814
  • Ward, M. H., Jones, R. R., Brender, J. D., de Kok, T. M., Weyer, P. J., Nolan, B. T., Villanueva, C. M., & van Breda, S. G. (2018). Drinking water nitrate and human health: An updated review. International Journal of Environmental Research and Public Health, 15(7), 1557. https://doi.org/10.3390/ijerph15071557
  • WHO. (2003). Nitrate and nitrite in drinking-water: Background document for development of WHO guidelines for drinking-water quality. https://iris.who.int/bitstream/handle/10665/75380/WHO_SDE_WSH_04.03_56_eng.pdf?sequence=1&isAllowed=y
  • Xu, L., & Liu, S. (2013). Study of short-term water quality prediction model based on wavelet neural network. Mathematical and Computer Modelling, 58(3-4), 807-813. https://doi.org/10.1016/j.mcm.2012.12.023
  • Yesilnacar, M. I., Sahinkaya, E., Naz, M., & Ozkaya, B. (2008). Neural network prediction of nitrate in groundwater of Harran Plain, Turkey. Environmental Geology, 56(1), 19-25. https://doi.org/10.1007/s00254-007-1136-5
  • Yildirim, C., Schildgen, T. F., Echtler, H., Melnick, D., Bookhagen, B., Ciner, A., Niedermann, S., Merhel, S., Martschini, M., Steier, P., & Strecker, M. R. (2013). Tectonic implications of fluvial incision and pediment deformation at the northern margin of the Central Anatolian Plateau based on multiple cosmogenic nuclides. Tectonics, 32(5), 1107-1120. https://doi.org/10.1002/tect.20066
  • Zhai, Y., Lei, Y., Wu, J., Teng, Y., Wang, J., Zhao, X., & Pan, X. (2017). Does the groundwater nitrate pollution in China pose a risk to human health? A critical review of published data. Environmental Science and Pollution Research, 24, 3640-3653. https://doi.org/10.1007/s11356-016-8088-9

Artificial Neural Networks Modelling for Nitrate Prediction in Surface Water of Gökırmak River (Türkiye)

Year 2025, Volume: 6 Issue: 2, 106 - 116, 29.06.2025
https://doi.org/10.56430/japro.1662391

Abstract

This study aimed to develop an artificial neural network (ANN) model to estimate the nitrate content in the surface water of the Gökırmak River. Samplings were carried out during 12 months from six stations between 2020 and 2021. Nitrate content varied between 0.20 and 2.70 mg l-1 while the mean value was 1.18 mg l-1 during the study period. The developed model consists of two input layers (month and station) and one output layer (nitrate content). Feed-forward backprop was used as the network type. Levenberg-Marquardt (TRAINLM) was used as a training function, LEARNGDM was used as an adaption learning function and mean squared error (MSE) was used as a performance function. The number of neurons was 10 and TANSIG was selected as transfer function. Epoch number adjusted 1000 iterations. ANN model predicted the nitrate content between 0.24 and 2.61 with a mean value of 1.16 mg l-1. The results showed that the best validation performance is 0.61264 at epoch 30. R values are 0.96257 and 0.84231 for training and testing, respectively. R-value was found 0.85352 for all data. In conclusion, this study presents the conception of an artificial neural network (ANN) model designed to predict nitrate concentrations in river water. The developed ANN model provides reasonable results for predicting the nitrate content using only given time and location inputs. More inputs can be included in future studies to ensure higher accuracy in the development of ANN models.

Supporting Institution

The Scientific Research Coordination Unit of Kastamonu University

Project Number

KÜBAP01/2020-09

Thanks

This study was financially supported by The Scientific Research Coordination Unit of Kastamonu University with project number: KÜBAP01/2020-09. An earlier version of this study was presented at the 5th International Congress on Engineering and Life Science held in Romania organized on 10-12 September, 2024.

References

  • Aguilera, P. A., Frenich, A. G., Torres, J. A., Castro, H., Vidal, J. M., & Canton, M. (2001). Application of the Kohonen neural network in coastal water management: Methodological development for the assessment and prediction of water quality. Water Research, 35(17), 4053-4062. https://doi.org/10.1016/S0043-1354(01)00151-8
  • Arslan, G., Kale, S., & Sönmez, A. Y. (2020). Trend analysis and forecasting of the Gökırmak River streamflow (Turkey). Oceanological and Hydrobiological Studies, 49(3), 230-246. https://doi.org/10.1515/ohs-2020-0021
  • Ayers, R., S., & Westcot, D. W. (1985). Water quality for agriculture. FAO Irrigation and Drainage Paper. https://www.fao.org/4/t0234e/T0234E00.htm#TOC
  • Back, J. O., Rivett, M. O., Hinz, L. B., Mackay, N., Wanangwa, G. J., Phiri, O. L., Songola, C. E., Thomas, M. A. S., Kumwenda, S., Nhlema, M., Miller, A. V. M., & Kalin, R. M. (2018). Risk assessment to groundwater of pit latrine rural sanitation policy in developing country settings. Science of The Total Environment, 613-614, 592-610. https://doi.org/10.1016/j.scitotenv.2017.09.071
  • Baduna Koçyiğit, M., Akay, H., & Yanmaz, A. M. (2017). Effect of watershed partitioning on hydrologic parameters and estimation of hydrograph of an ungauged basin: A case study in Gokirmak and Kocanaz, Turkey. Arabian Journal of Geosciences, 10, 331. https://doi.org/10.1007/s12517-017-3132-8
  • Banda, T. D., & Kumarasamy, M. (2024). Artificial neural network (ANN)-based water quality index (WQI) for assessing spatiotemporal trends in surface water quality—A case study of South African River Basins. Water, 16(11), 1485. https://doi.org/10.3390/w16111485
  • Behmel, S., Damour, M., Ludwig, R., & Rodriguez, M. J. (2016). Water quality monitoring strategies — a review and future perspectives. Science of The Total Environment, 571, 1312-1329. https://doi.org/10.1016/j.scitotenv.2016.06.235
  • Benzer, S., & Benzer, R. (2018). Modelling nitrate prediction of groundwater and surface water using artificial neural networks. Politeknik Dergisi, 21(2), 321-325. https://doi.org/10.2339/politeknik.385434
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
  • Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Wadsworth.
  • Chen, Y., Song, L., Liu, Y., Yang, L., & Li, D. (2020). A review of the artificial neural network models for water quality prediction. Applied Sciences, 10(17), 5776. https://doi.org/10.3390/app10175776
  • Darwishe, H., Khattabi, J. E., Chaaban, F., Louche, B., Masson, E., & Carlier, E. (2017). Prediction and control of nitrate concentrations in groundwater by implementing a model based on GIS and artificial neural networks (ANN). Environmental Earth Sciences, 76, 649. https://doi.org/10.1007/s12665-017-6990-1
  • Davies, O. A., Abolude, D. S., & Ugwumba, A. A. A. (2008). Phytoplankton of the lower reaches of Okpoka Creek, Port Harcourt, Nigeria. Journal of Fisheries International, 3(3), 83-90.
  • Dengiz, O., Özyazici, M. A., & Sağlam, M. (2015). Multi-criteria assessment and geostatistical approach for determination of rice growing suitability sites in Gokirmak catchment. Paddy and Water Environment, 13(1), 1-10. https://doi.org/10.1007/s10333-013-0400-4
  • EPA. (2020). Nitrates. https://archive.epa.gov/water/archive/web/html/vms57.html
  • Garcet, J. P., Ordonez, A., Roosen, J., & Vanclooster, M. (2006). Metamodelling: Theory, concepts and application to nitrate leaching modelling. Ecological Modelling, 193(3-4), 629-644. https://doi.org/10.1016/j.ecolmodel.2005.08.045
  • Halecki, W., Kruk, E., & Ryczek, M. (2018). Estimations of nitrate nitrogen, total phosphorus flux and suspended sediment concentration (SSC) as indicators of surface-erosion processes using an ANN (artificial neural network) based on geomorphological parameters in mountainous catchments. Ecological Indicators, 91, 461-469. https://doi.org/10.1016/j.ecolind.2018.03.072
  • Hrnjica, B., Mehr, A. D., Jakupović, E., Crnkić, A., & Hasanagić, R. (2021). Application of deep learning neural networks for nitrate prediction in the Klokot River, Bosnia and Herzegovina. 7th International Conference on Control, Instrumentation and Automation (ICCIA). Tabriz. https://doi.org/10.1109/ICCIA52082.2021.9403565
  • Hu, J., Chen, X., Chen, Y., Li, C., Ren, M., Jiang, C., Chen, Y., An, S., Xu, Y., & Zheng, L. (2021). Nitrate sources and transformations in surface water of a mining area due to intensive mining activities: Emphasis on effects on distinct subsidence waters. Journal of Environmental Management, 298, 113451. https://doi.org/10.1016/j.jenvman.2021.113451
  • İleri, S., Karaer, F., Katip, A., Onur, S. S., & Aksoy, E. (2014). Assessment of some pollution parameters with geographic information system (GIS) in sediment samples of Lake Uluabat, Turkey. Journal of Biological and Environmental Sciences, 8(22), 19-28.
  • Isık, H., & Akkan, T. (2025). Water quality assessment with artificial neural network models: Performance comparison between SMN, MLP and PS-ANN methodologies. Arabian Journal for Science and Engineering, 50, 369-387 https://doi.org/10.1007/s13369-024-09238-5
  • John, V., Jain, P., Rahate, M., & Labhasetwar, P. (2014). Assessment of deterioration in water quality from source to household storage in semi-urban settings of developing countries. Environmental Monitoring and Assessment, 186, 725-734. https://doi.org/10.1007/s10661-013-3412-z
  • Kale, S. (2020). Development of an adaptive neuro-fuzzy inference system (ANFIS) model to predict sea surface temperature (SST). Oceanological and Hydrobiological Studies, 49(4), 354-373, https://doi.org/10.1515/ohs-2020-0031
  • Kazi, T. G., Arain, M. B., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., Baig, J. A., & Shah, A. Q. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicology and Environmental Safety, 72(2), 301-309. https://doi.org/10.1016/j.ecoenv.2008.02.024
  • Kim, J., Seo, D., Jang, M., & Kim, J. (2021). Augmentation of limited input data using an artificial neural network method to improve the accuracy of water quality modeling in a large lake. Journal of Hydrology, 602, 126817. https://doi.org/10.1016/j.jhydrol.2021.126817
  • Kumar, P., Lai, S. H., Mohd, N. S., Kamal, M. R., Afan, H. A., Ahmed, A. N., Sherif, M., & Sefelnasr, A. (2020). Optimised neural network model for river-nitrogen prediction utilizing a new training approach. PLOS One, 15(9), e0239509. https://doi.org/10.1371/journal.pone.0239509
  • Kunkel, R., Kreins, P., Tetzlaff, B., & Wendland, F. (2010). Forecasting the effects of EU policy measures on the nitrate pollution of groundwater and surface waters. Journal of Environmental Sciences, 22(6), 872-877. https://doi.org/10.1016/s1001-0742(09)60191-1
  • Latif, S. D., Azmi, M. S. B. N., Ahmed, A. N., Fai, C. M., & El-Shafie, A. (2020). Application of artificial neural network for forecasting nitrate concentration as a water quality parameter: A case study of Feitsui Reservoir, Taiwan. International Journal of Design & Nature and Ecodynamics, 15(5), 647-652. https://doi.org/10.18280/ijdne.150505
  • Lawniczak, A. E., Zbierska, J., Nowak, B., Achtenberg, K., Grześkowiak, A., & Kanas, K. (2016). Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environmental Monitoring and Assessment, 188, 172. https://doi.org/10.1007/s10661-016-5167-9
  • Mahlknecht, J., Torres-Martínez, J. A., Kumar, M., Mora, A., Kaown, D., & Loge, F. J. (2023). Nitrate prediction in groundwater of data scarce regions: The futuristic fresh-water management outlook. Science of The Total Environment, 905, 166863. https://doi.org/10.1016/j.scitotenv.2023.166863
  • Meng, G., Fang, L., Yin, Y., Zhang, Z., Li, T., Chen, P., Liu, Y., & Zhang, L. (2022). Intelligent control of the electrochemical nitrate removal basing on artificial neural network (ANN). Journal of Water Process Engineering, 49, 103122. https://doi.org/10.1016/j.jwpe.2022.103122
  • Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to linear regression analysis. Wiley.
  • Najah, A., El-Shafie, A., Karim, O. A., & El-Shafie, A. H. (2013). Application of artificial neural networks for water quality prediction. Neural Computing and Applications, 22(Suppl 1), 187-201. https://doi.org/10.1007/s00521-012-0940-3
  • O’Shea, L., & Wade, A. (2009). Controlling nitrate pollution: An integrated approach. Land Use Policy, 26(3), 799-808. https://doi.org/10.1016/j.landusepol.2008.10.017
  • Ostad-Ali-Askari, K., Shayannejad, M., & Ghorbanizadeh-Kharazi, H. (2017). Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan, Iran. KSCE Journal of Civil Engineering, 21(1), 134-140. https://doi.org/10.1007/s12205-016-0572-8
  • Palabıyık, S., & Akkan, T. (2024). Evaluation of water quality based on artificial intelligence: Performance of multilayer perceptron neural networks and multiple linear regression versus water quality indexes. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-024-05075-6
  • Palani, S., Liong, S. Y., & Tkalich, P. (2008). An ANN application for water quality forecasting. Marine Pollution Bulletin, 56(9), 1586-1597. https://doi.org/10.1016/j.marpolbul.2008.05.021
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brocher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825-2830.
  • Peña-Haro, S., Pulido-Velazquez, M., & Sahuquillo, A. (2010). A hydro-economic modelling framework for optimal management of groundwater nitrate pollution from agriculture. Journal of Hydrology, 373(1-2), 193-203. https://doi.org/10.1016/j.jhydrol.2009.04.024
  • Ransom, K. M., Nolan, B. T., Stackelberg, P. E., Belitz, K., & Fram, M. S. (2022). Machine learning predictions of nitrate in groundwater used for drinking supply in the conterminous United States. Science of The Total Environment, 807(Part 3), 151065. https://doi.org/10.1016/j.scitotenv.2021.151065
  • Satish, N., Anmala, J., Rajitha, K., & Varma, M. R. (2024). A stacking ANN ensemble model of ML models for stream water quality prediction of Godavari River Basin, India. Ecological Informatics, 80, 102500. https://doi.org/10.1016/j.ecoinf.2024.102500
  • Şengörür, B., & Öz, C. (2002). Determination of the effects of water pollution of aquacultures using neural networks. Turkish Journal of Engineering and Environmental Sciences, 26(2), 95-106.
  • Shukla, S., & Saxena, A. (2018). Global status of nitrate contamination in groundwater: Its occurrence, health impacts, and mitigation measures. In C. Hussain (Ed.), Handbook of environmental materials management (pp. 1-21). Springer. https://doi.org/10.1007/978-3-319-58538-3_20-1
  • Singh, K. P., Basant, A., Malik, A., & Jain, G. (2009). Artificial neural network modeling of the river water quality—A case study. Ecological Modelling, 220(6), 888-895. https://doi.org/10.1016/j.ecolmodel.2009.01.004
  • Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199-222. https://doi.org/10.1023/B:STCO.0000035301.49549.88
  • Sonmez, A. Y., Kale, S., Ozdemir, R. C., & Kadak, A. E. (2018). An adaptive neuro-fuzzy inference system (ANFIS) to predict of cadmium (Cd) concentrations in the Filyos River, Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 18(12), 1333-1343, https://doi.org/10.4194/1303-2712-v18_12_01
  • Stamenković, L. J., Kurilić, S. M., & Ulniković, V. P. (2020). Prediction of nitrate concentration in Danube River water by using artificial neural networks. Water Supply, 20(6), 2119-2132. https://doi.org/10.2166/ws.2020.104
  • Stylianoudaki, C., Trichakis, I., & Karatzas, G. P. (2022). Modeling groundwater nitrate contamination using artificial neural networks. Water, 14(7), 1173. https://doi.org/10.3390/w14071173
  • Suen, J. P., & Eheart, J. W. (2003). Evaluation of neural networks for modeling nitrate concentrations in rivers. Journal of Water Resources Planning and Management, 129(6), 505-510. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:6(505)
  • Tanatmış, M. (2004). Gökırmak Nehir Havzası (Kastamonu) ile Cide (Kastamonu) - Ayancık (Sinop) arası sahil bölgesinin Ephemeroptera (Insecta) faunası. Türk Entomoloji Dergisi, 28(1), 45-56. (In Turkish)
  • Wagh, V. M., Panaskar, D. B., & Muley, A. A. (2017). Estimation of nitrate concentration in groundwater of Kadava river basin-Nashik district, Maharashtra, India by using artificial neural network model. Modeling Earth Systems and Environment, 3, 36. https://doi.org/10.1007/s40808-017-0290-3
  • Wagh, V., Panaskar, D., Muley, A., Mukate, S., & Gaikwad, S. (2018). Neural network modelling for nitrate concentration in groundwater of Kadava River basin, Nashik, Maharashtra, India. Groundwater for Sustainable Development, 7, 436-445. https://doi.org/10.1016/j.gsd.2017.12.012
  • Wakejo, W. K., Meshesha, B. T., Habtu, N. G., & Mekonnen, Y. G. (2022). Anthropogenic nitrate contamination of water resources in Ethiopia: An overview. Water Supply, 22(11), 8157-8172. https://doi.org/10.2166/ws.2022.377
  • Wang, Y., Zhou, J., Chen, K., Wang, Y., & Liu, L. (2017). Water quality prediction method based on LSTM neural network. 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE). Nanjing. https://doi.org/10.1109/ISKE.2017.8258814
  • Ward, M. H., Jones, R. R., Brender, J. D., de Kok, T. M., Weyer, P. J., Nolan, B. T., Villanueva, C. M., & van Breda, S. G. (2018). Drinking water nitrate and human health: An updated review. International Journal of Environmental Research and Public Health, 15(7), 1557. https://doi.org/10.3390/ijerph15071557
  • WHO. (2003). Nitrate and nitrite in drinking-water: Background document for development of WHO guidelines for drinking-water quality. https://iris.who.int/bitstream/handle/10665/75380/WHO_SDE_WSH_04.03_56_eng.pdf?sequence=1&isAllowed=y
  • Xu, L., & Liu, S. (2013). Study of short-term water quality prediction model based on wavelet neural network. Mathematical and Computer Modelling, 58(3-4), 807-813. https://doi.org/10.1016/j.mcm.2012.12.023
  • Yesilnacar, M. I., Sahinkaya, E., Naz, M., & Ozkaya, B. (2008). Neural network prediction of nitrate in groundwater of Harran Plain, Turkey. Environmental Geology, 56(1), 19-25. https://doi.org/10.1007/s00254-007-1136-5
  • Yildirim, C., Schildgen, T. F., Echtler, H., Melnick, D., Bookhagen, B., Ciner, A., Niedermann, S., Merhel, S., Martschini, M., Steier, P., & Strecker, M. R. (2013). Tectonic implications of fluvial incision and pediment deformation at the northern margin of the Central Anatolian Plateau based on multiple cosmogenic nuclides. Tectonics, 32(5), 1107-1120. https://doi.org/10.1002/tect.20066
  • Zhai, Y., Lei, Y., Wu, J., Teng, Y., Wang, J., Zhao, X., & Pan, X. (2017). Does the groundwater nitrate pollution in China pose a risk to human health? A critical review of published data. Environmental Science and Pollution Research, 24, 3640-3653. https://doi.org/10.1007/s11356-016-8088-9
There are 60 citations in total.

Details

Primary Language English
Subjects Irrigation Water Quality, Aquaculture and Fisheries (Other)
Journal Section Research Articles
Authors

Semih Kale 0000-0001-5705-6935

Adem Yavuz Sönmez 0000-0002-7043-1987

Yiğit Taştan 0000-0002-6782-1597

Ali Eslem Kadak 0000-0002-7128-9134

Rahmi Can Özdemir 0000-0001-9986-0868

Project Number KÜBAP01/2020-09
Publication Date June 29, 2025
Submission Date March 21, 2025
Acceptance Date May 27, 2025
Published in Issue Year 2025 Volume: 6 Issue: 2

Cite

APA Kale, S., Sönmez, A. Y., Taştan, Y., … Kadak, A. E. (2025). Artificial Neural Networks Modelling for Nitrate Prediction in Surface Water of Gökırmak River (Türkiye). Journal of Agricultural Production, 6(2), 106-116. https://doi.org/10.56430/japro.1662391