Research Article
BibTex RIS Cite

Evaluation of Recombinant Antibody Production Efficiency in CHO Cells with Sleeping Beauty Transposon Vector System

Year 2024, , 571 - 586, 30.09.2024
https://doi.org/10.28979/jarnas.1481069

Abstract

Chinese hamster ovary (CHO) mammalian cell lines are widely used as cell platforms in biopharmaceutical productions. Different transfection systems are employed for the integration of the target gene cassette into the cell genome and have limitations, such as (i) the integration region in the genome, (ii) the size of the target cassette, and (iii) long selection periods for stable expression. Transposon systems can be utilized to overcome the limitations mentioned in the efficient production of commercially significant recombinant proteins. This study aims to demonstrate the differences in production potential and selection periods by using a specially designed vector system for random genome integration in CHODG44 DHFR -/- cells and the Sleeping Beauty (SB) transposon system. In this context, the optimal transfer ratio between the donor and the helper plasmid was determined for the most efficient co-transfection in the SB transposon system. According to the results, the pools obtained using the SB transposon system had titers ranging from 1300 to 2600 mg/L in 13-day fed-batch studies, while the pool obtained using the random transfer system had a titer of 0.056 mg/L. Additionally, stable cell pools obtained using the transposon system underwent selection in a short period of 52 days, compared to over 100 days for the pool obtained through random transfer. Considering all these results together, it is demonstrated that stable CHO pools obtained using the optimal SB transposon system can achieve high-efficiency monoclonal antibody production in a short period, making it an optimal production platform in the biopharmaceutical field.

References

  • A. Naimi, Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons, Cell Communication and Signaling 20 (2022) 44 pages.
  • S. Luo, B. Zhang, Benchmark glycan profile of therapeutic monoclonal antibodies produced by mammalian cell expression systems, Pharmaceutical Research 41 (1) (2024) 29–37.
  • Y. H. Chen, M. S. Keiser, B. L. Davidson, Viral vectors for gene transfer, Current Protocols in Mouse Biology 8 (4) (2018) 7 pages.
  • S. H. Jazayeri, A. Amiri-Yekta, S. Bahrami, H. Gourabi, M. H. Sanati, M. R. Khorramizadeh, Vector and cell line engineering technologies toward recombinant protein expression in mammalian cell lines, Applied Biochemistry and Biotechnology 185 (4) (2018) 986–1003.
  • S. Puttini, MAR-mediated integration of plasmid vectors for in vivo gene transfer and regulation, BMC Molecular Biology 14 (1) (2013) 26 pages.
  • J. Chusainow, Y. S. Yang, J. H. M. Yeo, P. C. Toh, P. Asvadi, N. S. C. Wong, M. G. S. Yap, A Study of monoclonal antibody-producing CHO cell lines: What makes a stable high producer?, Biotechnology and Bioengineering 102 (4) (2009) 1182–1196.
  • S. W. Shin, J. S. Lee, CHO cell line development and engineering via site-specific integration: Challenges and opportunities, Biotechnology and Bioprocess Engineering 25 (5) (2020) 633–645.
  • M. Wei, C.-L. Mi, C.-Q. Jing, T.-Y. Wang, Progress of transposon vector system for production of recombinant therapeutic proteins in mammalian cells, Frontiers in Bioengineering and Biotechnology 10 (2022) 10 pages.
  • N. Tschorn, K. Berg, J. Stitz, Transposon vector-mediated stable gene transfer for the accelerated establishment of recombinant mammalian cell pools allowing for high-yield production of biologics, Biotechnology Letters 42 (7) (2020) 1103–1112.
  • D. Balciunas, K. J. Wangensteen, A. Wilber, J. Bell, A. Geurts, S. Sivasubbu, X. Wang, P. B. Hackett, D. A. Largaespada, R. S. Mclvor, S. C. Ekker, Harnessing a high cargo-capacity transposon for genetic applications in vertebrates, PLoS Genetics 2 (11) (2006) 11 pages.
  • M. Sato, E. Inada, I. Saitoh, S. Watanabe, S. Nakamura, PiggyBac-based non-viral in vivo gene delivery useful for production of genetically modified animals and organs, Pharmaceutics 12 (3) (2020) 277 20 pages.
  • S. Balasubramanian, Y. Rajendra, L. Baldi, D. L. Hacker, F. M. Wurm, Comparison of three transposons for the generation of highly productive recombinant CHO cell pools and cell lines, Biotechnology and Bioengineering 113 (6) (2016) 1234–1243.
  • L. Mátés, Z. Izsvák, Z. Ivics, Technology transfer from worms and flies to vertebrates: Transposition-based genome manipulations and their future perspectives, Genome Biology 8 (1) (2007) Article Number S1 19 pages.
  • F. Voigt, L. Wiedemann, C. Zuliani, I. Querques, A. Sebe, L. Mates, Z. Izsvak, Z. Ivics, O. Barabas, Sleeping Beauty transposase structure allows rational design of hyperactive variants for genetic engineering, Nature Communication 7 (1) (2016) Article Number 11126 8 pages.
  • S. R. Yant, A. Ehrhardt, J. G. Mikkelsen, L. Meuse, T. Pham, M. A. Kay, Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo, Nature Biotechnology 20 (10) (2002) 10 pages.
  • H. Nakanishi, Y. Higuchi, S. Kawakami, F. Yamashita, M. Hashida, Comparison of piggybac transposition efficiency between linear and circular donor vectors in mammalian cells, Journal of Biotechnology 154 (4) (2011) 205–208.
  • Y. Zhang, U. Werling, W. Edelmann, SLiCE: A novel bacterial cell extract-based DNA cloning method, Nucleic Acids Research 40 (8) (2012) 10 pages.
  • C. T. Chung, S. L. Niemela, R. H. Miller, One-step preparation of competent Escherichia coli: Transformation and storage of bacterial cells in the same solution, Proceedings of the National Academy of Sciences of the United States of America 86 (7) (1989) 2172–2175.
  • I. Grabundzija, M. Irgang, L. Mátés, E. Belay, J. Matrai, A. Gogol-Döring, K. Kawakami, W. Chen, P. Ruiz, M. K. L. Chuah, T. Vanden Driessche, Z. Izsvák, Z. Ivics, Comparative analysis of transposable element vector systems in human cells, Molecular Therapy 18 (6) (2010) 1200–1209.
  • A. R. Lohe, D. L. Hartl, Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation, Molecular Biology and Evolution 13 (4) (1996) 549–555.
  • T. Sumiyoshi, N. G. Holt, R. P. Hollis, S. Ge, P. M. Cannon, G. M. Crooks, D. B. Kohn, Stable transgene expression in primitive human CD34+ hematopoietic stem/progenitor cells, using the Sleeping Beauty Transposon System, Human Gene Therapy 20 (12) (2009) 1607–1626.
  • H. Zayed, Z. Izsvák, O. Walisko, Z. Ivics, Development of hyperactive Sleeping Beauty transposon vectors by mutational analysis, Molecular Therapy: The Journal of the American Society of Gene Therapy 9 (2) (2004) 292–304.
  • T. Yoshikawa, F. Nakanishi, Y. Ogura, D. Oi, T. Omasa, Y. Katakura, M. Kishimoto, K. Suga, Amplified gene location in chromosomal DNA affected recombinant protein production and stability of amplified genes, Biotechnology Progress 16 (5) (2000) 710–715.
  • A. Stadermann, M. Gamer, J. Fieder, B. Lindler, S. Fehrmann, M. Schmidt, P. Schulz, I. H. Gorr, Structural analysis of random transgene integration in cho manufacturing cell lines by targeted sequencing, Biotechnology and Bioengineering 119 (3) (2022) 868–880.
  • K. Berg, V. N. Schäfer, N. Tschorn, J. Stitz, Advanced establishment of stable recombinant human suspension cell lines using genotype-phenotype coupling transposon vectors, Genotype-Phenotype Coupling: Methods and Protocols, Humana Press, New York, 2020.
  • C. Gorman, R. Padmanabhan, B. H. Howard, High-efficiency DNA-mediated transformation of primate cells, Science 221 (4610) (1983) 4610 551–553.
  • B. Liu, M. Spearman, J. Doering, E. Lattová, H. Perreault, M. Butler, The availability of glucose to CHO cells affects the intracellular lipid-linked oligosaccharide distribution, site occupancy and the N-glycosylation profile of a monoclonal antibody, Journal of Biotechnology 170 (2014) 17–27.
  • L. Zhang, A. Castan, J. Stevenson, N. Chatzissavidou, F. Vilaplana, V. Chotteau, Combined effects of glycosylation precursors and lactate on the glycoprofile of IgG produced by CHO cells, Journal of Biotechnology 289 (2019) 71–79.
  • H. Le, S. Kabbur, L. Pollastrini, Z. Sun, K. Mills, K. Johnson, G. Karypis, W. S. Hu, Multivariate analysis of cell culture bioprocess data—lactate consumption as process indicator, Journal of Biotechnology 162 (2) (2012) 210–223.
  • M. Torres, C. Altamirano, A. J. Dickson, Process and metabolic engineering perspectives of lactate production in mammalian cell cultures, Current Opinion in Chemical Engineering 22 (2018) 184–190.
  • S. R. Yant, L. Meuse, W. Chiu, Z. Ivics, Z. Izsvak, M. A. Kay, Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system, Nature Genetics 25 (1) (2000) 35–41.
  • Z. Izsvák, Z. Ivics, Sleeping Beauty transposition: Biology and applications for molecular therapy, Molecular Therapy 9 (2) (2004) 147–156.
  • A. J. Dupuy, S. Fritz, D. A. Largaespada, Transposition and gene disruption in the male germline of the mouse, Genesis 30 (2) (2001) 82–88.
  • M. J. Wurm, F. M. Wurm, Naming CHO cells for bio-manufacturing: Genome plasticity and variant phenotypes of cell populations in bioreactors question the relevance of old names, Biotechnology Journal 16 (7) (2021) 24 pages.
  • C. Frye, R. Deshpande, S. Estes, K. Francissen, J. Joly, A. Lubiniecki, T. Munro, R. Russell, T. Wang, K. Anderson, Industry view on the relative importance of 'Clonality' of biopharmaceutical-producing cell lines, Biologicals 44 (2) (2016) 117–122.
  • G. Walsh, Biopharmaceutical benchmarks 2018, Nature Biotechnology 36 (12) (2018) 1136–1145.
  • J. Yoshida, K. Akagi, R. Misawa, C. Kokubu, J. Takeda, K. Horie, Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus, Scientific Report 7 (1) (2017) Article Number 43613 18 pages.
Year 2024, , 571 - 586, 30.09.2024
https://doi.org/10.28979/jarnas.1481069

Abstract

References

  • A. Naimi, Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons, Cell Communication and Signaling 20 (2022) 44 pages.
  • S. Luo, B. Zhang, Benchmark glycan profile of therapeutic monoclonal antibodies produced by mammalian cell expression systems, Pharmaceutical Research 41 (1) (2024) 29–37.
  • Y. H. Chen, M. S. Keiser, B. L. Davidson, Viral vectors for gene transfer, Current Protocols in Mouse Biology 8 (4) (2018) 7 pages.
  • S. H. Jazayeri, A. Amiri-Yekta, S. Bahrami, H. Gourabi, M. H. Sanati, M. R. Khorramizadeh, Vector and cell line engineering technologies toward recombinant protein expression in mammalian cell lines, Applied Biochemistry and Biotechnology 185 (4) (2018) 986–1003.
  • S. Puttini, MAR-mediated integration of plasmid vectors for in vivo gene transfer and regulation, BMC Molecular Biology 14 (1) (2013) 26 pages.
  • J. Chusainow, Y. S. Yang, J. H. M. Yeo, P. C. Toh, P. Asvadi, N. S. C. Wong, M. G. S. Yap, A Study of monoclonal antibody-producing CHO cell lines: What makes a stable high producer?, Biotechnology and Bioengineering 102 (4) (2009) 1182–1196.
  • S. W. Shin, J. S. Lee, CHO cell line development and engineering via site-specific integration: Challenges and opportunities, Biotechnology and Bioprocess Engineering 25 (5) (2020) 633–645.
  • M. Wei, C.-L. Mi, C.-Q. Jing, T.-Y. Wang, Progress of transposon vector system for production of recombinant therapeutic proteins in mammalian cells, Frontiers in Bioengineering and Biotechnology 10 (2022) 10 pages.
  • N. Tschorn, K. Berg, J. Stitz, Transposon vector-mediated stable gene transfer for the accelerated establishment of recombinant mammalian cell pools allowing for high-yield production of biologics, Biotechnology Letters 42 (7) (2020) 1103–1112.
  • D. Balciunas, K. J. Wangensteen, A. Wilber, J. Bell, A. Geurts, S. Sivasubbu, X. Wang, P. B. Hackett, D. A. Largaespada, R. S. Mclvor, S. C. Ekker, Harnessing a high cargo-capacity transposon for genetic applications in vertebrates, PLoS Genetics 2 (11) (2006) 11 pages.
  • M. Sato, E. Inada, I. Saitoh, S. Watanabe, S. Nakamura, PiggyBac-based non-viral in vivo gene delivery useful for production of genetically modified animals and organs, Pharmaceutics 12 (3) (2020) 277 20 pages.
  • S. Balasubramanian, Y. Rajendra, L. Baldi, D. L. Hacker, F. M. Wurm, Comparison of three transposons for the generation of highly productive recombinant CHO cell pools and cell lines, Biotechnology and Bioengineering 113 (6) (2016) 1234–1243.
  • L. Mátés, Z. Izsvák, Z. Ivics, Technology transfer from worms and flies to vertebrates: Transposition-based genome manipulations and their future perspectives, Genome Biology 8 (1) (2007) Article Number S1 19 pages.
  • F. Voigt, L. Wiedemann, C. Zuliani, I. Querques, A. Sebe, L. Mates, Z. Izsvak, Z. Ivics, O. Barabas, Sleeping Beauty transposase structure allows rational design of hyperactive variants for genetic engineering, Nature Communication 7 (1) (2016) Article Number 11126 8 pages.
  • S. R. Yant, A. Ehrhardt, J. G. Mikkelsen, L. Meuse, T. Pham, M. A. Kay, Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo, Nature Biotechnology 20 (10) (2002) 10 pages.
  • H. Nakanishi, Y. Higuchi, S. Kawakami, F. Yamashita, M. Hashida, Comparison of piggybac transposition efficiency between linear and circular donor vectors in mammalian cells, Journal of Biotechnology 154 (4) (2011) 205–208.
  • Y. Zhang, U. Werling, W. Edelmann, SLiCE: A novel bacterial cell extract-based DNA cloning method, Nucleic Acids Research 40 (8) (2012) 10 pages.
  • C. T. Chung, S. L. Niemela, R. H. Miller, One-step preparation of competent Escherichia coli: Transformation and storage of bacterial cells in the same solution, Proceedings of the National Academy of Sciences of the United States of America 86 (7) (1989) 2172–2175.
  • I. Grabundzija, M. Irgang, L. Mátés, E. Belay, J. Matrai, A. Gogol-Döring, K. Kawakami, W. Chen, P. Ruiz, M. K. L. Chuah, T. Vanden Driessche, Z. Izsvák, Z. Ivics, Comparative analysis of transposable element vector systems in human cells, Molecular Therapy 18 (6) (2010) 1200–1209.
  • A. R. Lohe, D. L. Hartl, Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation, Molecular Biology and Evolution 13 (4) (1996) 549–555.
  • T. Sumiyoshi, N. G. Holt, R. P. Hollis, S. Ge, P. M. Cannon, G. M. Crooks, D. B. Kohn, Stable transgene expression in primitive human CD34+ hematopoietic stem/progenitor cells, using the Sleeping Beauty Transposon System, Human Gene Therapy 20 (12) (2009) 1607–1626.
  • H. Zayed, Z. Izsvák, O. Walisko, Z. Ivics, Development of hyperactive Sleeping Beauty transposon vectors by mutational analysis, Molecular Therapy: The Journal of the American Society of Gene Therapy 9 (2) (2004) 292–304.
  • T. Yoshikawa, F. Nakanishi, Y. Ogura, D. Oi, T. Omasa, Y. Katakura, M. Kishimoto, K. Suga, Amplified gene location in chromosomal DNA affected recombinant protein production and stability of amplified genes, Biotechnology Progress 16 (5) (2000) 710–715.
  • A. Stadermann, M. Gamer, J. Fieder, B. Lindler, S. Fehrmann, M. Schmidt, P. Schulz, I. H. Gorr, Structural analysis of random transgene integration in cho manufacturing cell lines by targeted sequencing, Biotechnology and Bioengineering 119 (3) (2022) 868–880.
  • K. Berg, V. N. Schäfer, N. Tschorn, J. Stitz, Advanced establishment of stable recombinant human suspension cell lines using genotype-phenotype coupling transposon vectors, Genotype-Phenotype Coupling: Methods and Protocols, Humana Press, New York, 2020.
  • C. Gorman, R. Padmanabhan, B. H. Howard, High-efficiency DNA-mediated transformation of primate cells, Science 221 (4610) (1983) 4610 551–553.
  • B. Liu, M. Spearman, J. Doering, E. Lattová, H. Perreault, M. Butler, The availability of glucose to CHO cells affects the intracellular lipid-linked oligosaccharide distribution, site occupancy and the N-glycosylation profile of a monoclonal antibody, Journal of Biotechnology 170 (2014) 17–27.
  • L. Zhang, A. Castan, J. Stevenson, N. Chatzissavidou, F. Vilaplana, V. Chotteau, Combined effects of glycosylation precursors and lactate on the glycoprofile of IgG produced by CHO cells, Journal of Biotechnology 289 (2019) 71–79.
  • H. Le, S. Kabbur, L. Pollastrini, Z. Sun, K. Mills, K. Johnson, G. Karypis, W. S. Hu, Multivariate analysis of cell culture bioprocess data—lactate consumption as process indicator, Journal of Biotechnology 162 (2) (2012) 210–223.
  • M. Torres, C. Altamirano, A. J. Dickson, Process and metabolic engineering perspectives of lactate production in mammalian cell cultures, Current Opinion in Chemical Engineering 22 (2018) 184–190.
  • S. R. Yant, L. Meuse, W. Chiu, Z. Ivics, Z. Izsvak, M. A. Kay, Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system, Nature Genetics 25 (1) (2000) 35–41.
  • Z. Izsvák, Z. Ivics, Sleeping Beauty transposition: Biology and applications for molecular therapy, Molecular Therapy 9 (2) (2004) 147–156.
  • A. J. Dupuy, S. Fritz, D. A. Largaespada, Transposition and gene disruption in the male germline of the mouse, Genesis 30 (2) (2001) 82–88.
  • M. J. Wurm, F. M. Wurm, Naming CHO cells for bio-manufacturing: Genome plasticity and variant phenotypes of cell populations in bioreactors question the relevance of old names, Biotechnology Journal 16 (7) (2021) 24 pages.
  • C. Frye, R. Deshpande, S. Estes, K. Francissen, J. Joly, A. Lubiniecki, T. Munro, R. Russell, T. Wang, K. Anderson, Industry view on the relative importance of 'Clonality' of biopharmaceutical-producing cell lines, Biologicals 44 (2) (2016) 117–122.
  • G. Walsh, Biopharmaceutical benchmarks 2018, Nature Biotechnology 36 (12) (2018) 1136–1145.
  • J. Yoshida, K. Akagi, R. Misawa, C. Kokubu, J. Takeda, K. Horie, Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus, Scientific Report 7 (1) (2017) Article Number 43613 18 pages.
There are 37 citations in total.

Details

Primary Language English
Subjects Bioprocessing, Bioproduction and Bioproducts, Industrial Biotechnology (Other)
Journal Section Research Article
Authors

Pelin Kolçak Yaşlı 0000-0003-4724-5796

Seda Kulabaş 0000-0003-1258-8019

Evren Doruk Engin 0000-0001-9209-8858

Publication Date September 30, 2024
Submission Date May 9, 2024
Acceptance Date June 14, 2024
Published in Issue Year 2024

Cite

APA Kolçak Yaşlı, P., Kulabaş, S., & Engin, E. D. (2024). Evaluation of Recombinant Antibody Production Efficiency in CHO Cells with Sleeping Beauty Transposon Vector System. Journal of Advanced Research in Natural and Applied Sciences, 10(3), 571-586. https://doi.org/10.28979/jarnas.1481069
AMA Kolçak Yaşlı P, Kulabaş S, Engin ED. Evaluation of Recombinant Antibody Production Efficiency in CHO Cells with Sleeping Beauty Transposon Vector System. JARNAS. September 2024;10(3):571-586. doi:10.28979/jarnas.1481069
Chicago Kolçak Yaşlı, Pelin, Seda Kulabaş, and Evren Doruk Engin. “Evaluation of Recombinant Antibody Production Efficiency in CHO Cells With Sleeping Beauty Transposon Vector System”. Journal of Advanced Research in Natural and Applied Sciences 10, no. 3 (September 2024): 571-86. https://doi.org/10.28979/jarnas.1481069.
EndNote Kolçak Yaşlı P, Kulabaş S, Engin ED (September 1, 2024) Evaluation of Recombinant Antibody Production Efficiency in CHO Cells with Sleeping Beauty Transposon Vector System. Journal of Advanced Research in Natural and Applied Sciences 10 3 571–586.
IEEE P. Kolçak Yaşlı, S. Kulabaş, and E. D. Engin, “Evaluation of Recombinant Antibody Production Efficiency in CHO Cells with Sleeping Beauty Transposon Vector System”, JARNAS, vol. 10, no. 3, pp. 571–586, 2024, doi: 10.28979/jarnas.1481069.
ISNAD Kolçak Yaşlı, Pelin et al. “Evaluation of Recombinant Antibody Production Efficiency in CHO Cells With Sleeping Beauty Transposon Vector System”. Journal of Advanced Research in Natural and Applied Sciences 10/3 (September 2024), 571-586. https://doi.org/10.28979/jarnas.1481069.
JAMA Kolçak Yaşlı P, Kulabaş S, Engin ED. Evaluation of Recombinant Antibody Production Efficiency in CHO Cells with Sleeping Beauty Transposon Vector System. JARNAS. 2024;10:571–586.
MLA Kolçak Yaşlı, Pelin et al. “Evaluation of Recombinant Antibody Production Efficiency in CHO Cells With Sleeping Beauty Transposon Vector System”. Journal of Advanced Research in Natural and Applied Sciences, vol. 10, no. 3, 2024, pp. 571-86, doi:10.28979/jarnas.1481069.
Vancouver Kolçak Yaşlı P, Kulabaş S, Engin ED. Evaluation of Recombinant Antibody Production Efficiency in CHO Cells with Sleeping Beauty Transposon Vector System. JARNAS. 2024;10(3):571-86.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).