Research Article
BibTex RIS Cite

Transcriptional Regulation of XPR1 by ETS1 in Hepatocellular Carcinoma: A Link Between EMT and Phosphate Metabolism

Year 2025, Volume: 11 Issue: 4, 359 - 368, 31.12.2025
https://doi.org/10.28979/jarnas.1758996

Abstract

Metabolic adaptation is a hallmark of cancer, with phosphate homeostasis
playing a crucial role in supporting tumor growth and survival. SLC53A1, xenotropic and
polytropic retrovirus receptor 1 (XPR1), the only known inorganic phosphate exporter in
multicellular organisms, is frequently overexpressed in hepatocellular carcinoma (HCC) and
associated with aggressive tumor behavior. However, its upstream regulatory mechanisms
remain largely undefined. In this study, we investigated the transcriptional control of XPR1
by ETS Proto-Oncogene 1 (ETS1), a context-dependent transcription factor implicated in
epithelial–mesenchymal transition and tumor progression. In silico analysis of the Eukaryotic
Promoter Database (EPD) revealed several putative ETS1 binding sites within the XPR1
promoter region. Chromatin immunoprecipitation (ChIP) assays confirmed ETS1 binding to
the XPR1 promoter. Furthermore, ETS1 knockdown using the lentiviral system in Sk-HEP1
and SNU398 HCC cell lines led to a significant increase in XPR1 mRNA expression by
qPCR. A consistent inverse relationship between ETS1 and XPR1 expression was observed
across HCC cell lines. These findings demonstrate that ETS1 acts as a transcriptional
repressor of XPR1. Given XPR1’s role in phosphate efflux, ETS1-mediated suppression
may limit phosphate export in early tumor stages. Notably, public transcriptomic datasets
reveal reduced ETS1 and elevated XPR1 expression in advanced HCC, correlating with
poor prognosis. This study identifies a novel ETS1–XPR1 regulatory axis, highlighting the
convergence of transcriptional and metabolic control in HCC. Targeting this axis could offer
new therapeutic opportunities in metabolically dysregulated tumors.

Ethical Statement

No approval from the Board of Ethics is required.

Supporting Institution

Gebze Technical University

Project Number

No funding

Thanks

The author would like to thank Prof. Dr. Tamer Yağcı for kindly allowing to utilize his laboratory infrastructure.

References

  • D. Hanahan, R. A. Weinberg, Hallmarks of cancer: The next generation, Cell 144 (5) (2011) 646–674.
  • P. Jacquet, A. Stéphanou, Searching for the metabolic signature of cancer: A review from Warburg’s time to now, Biomolecules 12 (10) (2022) 1412.
  • L. Beck, S. Beck-Cormier, Extracellular phosphate sensing in mammals: What do we know?, Journal of Molecular Endocrinology 65 (3) (2020) R53 – R63.
  • H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: A Cancer Journal for Clinicians 71 (3) 209–249.
  • A. Forner, M. Reig, J. Bruix, Hepatocellular carcinoma, The Lancet 391 (10127) (2018) 1301–1314.
  • S. Park, M. N. Hall, Metabolic reprogramming in hepatocellular carcinoma: Mechanisms and therapeutic implications, Experimental and Molecular Medicine 57 (3) (2025) 515–523.
  • X. Li, C. Gu, S. Hostachy, S. Sahu, C. Wittwer, H. J. Jessen, D. Fiedler, H. Wang, S. B. Shears, Control of XPR1-dependent cellular phosphate efflux by InsP8 is an exemplar for functionallyexclusive inositol pyrophosphate signaling, Proceedings of the National Academy of Sciences 117 (7) (2020) 3568–3574.
  • X. Li, R. B. Kirkpatrick, X. Wang, C. J. Tucker, A. Shukla, H. J. Jessen, H. Wang, S. B. Shears, C. Gu, Homeostatic coordination of cellular phosphate uptake and efflux requires an organelle-based receptor for the inositol pyrophosphate IP8 , Cell Reports 43 (6) (2024) 114316.
  • Y. Wang, Y. Wang, H. Yang, A. Li, D. Ma, H. Shen, Structural basis of phosphate export by human XPR1, Cell Research 35 (4) (2025) 313–316.
  • D. P. Bondeson, B. R. Paolella, A. Asfaw, M. V. Rothberg, T. A. Skipper, C. Langan, G. Mesa, A. Gonzalez, L. E. Surface, K. Ito, M. Kazachkova, W. N. Colgan, A. Warren, J. M. Dempster, J. M. Krill-Burger, M. Ericsson, A. A. Tang, I. Fung, E. S. Chambers, Abdusamad, ..., T. R. Golub, Phosphate dysregulation via the XPR1–KIDINS220 protein complex is a therapeutic vulnerability in ovarian cancer, Nature Cancer 3 (6) (2022) 681–695.
  • H. Wang, X. Luo, B. Yang, F. Tang, X. Jiang, H. Zhu, J. Hu, XPR1 promotes ovarian cancer growth and regulates MHC-I through autophagy, Genes & Diseases 12 (5) (2025) 101507.
  • L. Chen, J. He, M. Wang, J. She, Structure and function of human XPR1 in phosphate export, Nature Communications 16 (1) (2025) 2983.
  • J. Dittmer, The biology of the Ets1 proto-oncogene, Molecular Cancer 2 (1) (2003) 29.
  • A. Seth, D. K. Watson, ETS transcription factors and their emerging roles in human cancer, European Journal of Cancer 41 (16) (2005) 2462–2478, transcription Factors in Cancer.
  • T. Hsu, M. Trojanowska, D. K. Watson, Ets proteins in biological control and cancer, Journal of Cellular Biochemistry 91 (5) (2004) 896–903.
  • M. L. Verschoor, L. A. Wilson, C. P. Verschoor, G. Singh, Ets-1 regulates energy metabolism in cancer cells, PLoS One 5 (10) (2010) e13565.
  • Z. Shao, Y. Li, W. Dai, H. Jia, Y. Zhang, Q. Jiang, Y. Chai, X. Li, H. Sun, R. Yang, Y. Cao, F. Feng, Y. Guo, ETS-1 induces Sorafenib-resistance in hepatocellular carcinoma cells via regulating transcription factor activity of PXR, Pharmacological Research 135 (2018) 188–200.
  • K. Sheng, Y. Wu, H. Lin, M. Fang, C. Xue, X. Lin, X. Lin, Transcriptional regulation of Siglec-15 by ETS-1 and ETS-2 in hepatocellular carcinoma cells, International Journal of Molecular Sciences 24 (1).
  • R. Dreos, G. Ambrosini, R. C. Périer, P. Bucher, The Eukaryotic Promoter Database: Expansion of EPDnew and new promoter analysis tools, Nucleic Acids Research 43 (D1) (2015) D92–D96.
  • P. Balcik-Ercin, M. Cetin, I. Yalim-Camci, G. Odabas, N. Tokay, A. E. Sayan, T. Yagci, Genomewide analysis of endogenously expressed ZEB2 binding sites reveals inverse correlations between ZEB2 and GalNAc-transferase GALNT3 in human tumors, Cellular Oncology 41 (4) (2018) 379–393.
  • D. Baillat, G. Leprivier, D. Régnier, N. Vintonenko, A. Bégue, D. Stéhelin, M. Aumercier, Stromelysin-1 expression is activated in vivo by Ets-1 through palindromic head-to-head Ets binding sites present in the promoter, Oncogene 25 (42) (2006) 5764–5776.
  • I. Yalim-Camci, P. Balcik-Ercin, M. Cetin, G. Odabas, N. Tokay, A. E. Sayan, T. Yagci, ETS1 is coexpressed with ZEB2 and mediates ZEB2-induced epithelial-mesenchymal transition in human tumors, Molecular Carcinogenesis 58 (6) (2019) 1068–1081.
  • Z.-q. Liao, Y.-f. Lv, M.-d. Kang, Y.-l. Ji, Y. Liu, L.-r. Wang, J.-l. Tang, Z.-Q. Deng, Y. Yi, Q. Tang, Inhibition of XPR1-dependent phosphate efflux induces mitochondrial dysfunction: A potential molecular target therapy for hepatocellular carcinoma?, Molecular Carcinogenesis 63 (12) (2024) 2332–2345.
  • D. S. Chandrashekar, S. K. Karthikeyan, P. K. Korla, H. Patel, A. R. Shovon, M. Athar, G. J. Netto, Z. S. Qin, S. Kumar, U. Manne, C. J. Creighton, S. Varambally, UALCAN: An update to the integrated cancer data analysis platform, Neoplasia 25 (2022) 18–27.
  • E. Villa, E. S. Ali, U. Sahu, I. Ben-Sahra, Cancer cells tune the signaling pathways to empower de Novo synthesis of nucleotides, Cancers (Basel) 11 (5) (2019) 688.
  • N. N. Pavlova, J. Zhu, C. B. Thompson, The hallmarks of cancer metabolism: Still emerging, Cell Metabolism 34 (3) (2022) 355–377.
  • T. Zhang, D. Liu, Y. Wang, M. Sun, L. Xia, The E-twenty-six family in hepatocellular carcinoma: Moving into the spotlight, Frontiers in Oncology 10–2020.
There are 27 citations in total.

Details

Primary Language English
Subjects Cell Metabolism, Cancer Biology, Molecular Genetics
Journal Section Research Article
Authors

İrem Yalım Camcı 0000-0002-2534-4155

Project Number No funding
Submission Date August 5, 2025
Acceptance Date October 26, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 11 Issue: 4

Cite

APA Yalım Camcı, İ. (2025). Transcriptional Regulation of XPR1 by ETS1 in Hepatocellular Carcinoma: A Link Between EMT and Phosphate Metabolism. Journal of Advanced Research in Natural and Applied Sciences, 11(4), 359-368. https://doi.org/10.28979/jarnas.1758996
AMA Yalım Camcı İ. Transcriptional Regulation of XPR1 by ETS1 in Hepatocellular Carcinoma: A Link Between EMT and Phosphate Metabolism. JARNAS. December 2025;11(4):359-368. doi:10.28979/jarnas.1758996
Chicago Yalım Camcı, İrem. “Transcriptional Regulation of XPR1 by ETS1 in Hepatocellular Carcinoma: A Link Between EMT and Phosphate Metabolism”. Journal of Advanced Research in Natural and Applied Sciences 11, no. 4 (December 2025): 359-68. https://doi.org/10.28979/jarnas.1758996.
EndNote Yalım Camcı İ (December 1, 2025) Transcriptional Regulation of XPR1 by ETS1 in Hepatocellular Carcinoma: A Link Between EMT and Phosphate Metabolism. Journal of Advanced Research in Natural and Applied Sciences 11 4 359–368.
IEEE İ. Yalım Camcı, “Transcriptional Regulation of XPR1 by ETS1 in Hepatocellular Carcinoma: A Link Between EMT and Phosphate Metabolism”, JARNAS, vol. 11, no. 4, pp. 359–368, 2025, doi: 10.28979/jarnas.1758996.
ISNAD Yalım Camcı, İrem. “Transcriptional Regulation of XPR1 by ETS1 in Hepatocellular Carcinoma: A Link Between EMT and Phosphate Metabolism”. Journal of Advanced Research in Natural and Applied Sciences 11/4 (December2025), 359-368. https://doi.org/10.28979/jarnas.1758996.
JAMA Yalım Camcı İ. Transcriptional Regulation of XPR1 by ETS1 in Hepatocellular Carcinoma: A Link Between EMT and Phosphate Metabolism. JARNAS. 2025;11:359–368.
MLA Yalım Camcı, İrem. “Transcriptional Regulation of XPR1 by ETS1 in Hepatocellular Carcinoma: A Link Between EMT and Phosphate Metabolism”. Journal of Advanced Research in Natural and Applied Sciences, vol. 11, no. 4, 2025, pp. 359-68, doi:10.28979/jarnas.1758996.
Vancouver Yalım Camcı İ. Transcriptional Regulation of XPR1 by ETS1 in Hepatocellular Carcinoma: A Link Between EMT and Phosphate Metabolism. JARNAS. 2025;11(4):359-68.


TR Dizin 20466


SAO/NASA Astrophysics Data System (ADS)    34270

                                                   American Chemical Society-Chemical Abstracts Service CAS    34922 


DOAJ 32869

EBSCO 32870

Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).