Research Article
BibTex RIS Cite

Multi-Enzyme Mimicry by Dinuclear Transition Metal Complexes with Oxime Ligand

Year 2025, Volume: 11 Issue: 4, 369 - 381, 31.12.2025
https://doi.org/10.28979/jarnas.1769716

Abstract

This study focuses on the comparative evaluation of the catalase-, catecholase-, and
phenoxazinone synthase-like activities of six dinuclear oxime-based metal(II) complexes containing
Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II) ions. The enzymatic models were investigated
spectrophotometrically under ambient conditions using hydrogen peroxide, 3,5-di-tert-butylcatechol
(3,5-DTBC), and 2-aminophenol as substrates, respectively. Among all the complexes, the Cu(II)
complex exhibited superior catalytic efficiency in all three models, demonstrating the highest
molecular oxygen (O2) release in the catalase assay and the fastest oxidation rates in both catecholase
and phenoxazinone synthase reactions. Mn(II) and Co(II) complexes followed with moderately high
activities, while Ni(II) and Zn(II) derivatives showed significantly lower catalytic responses due to
their limited redox flexibility. The variation in rate constants and oxygen evolution profiles
highlighted distinct structure–activity relationships in each case. These findings reveal that while no
single complex was universally dominant across all assays, Cu(II)-based systems displayed the most
consistent and effective biomimetic behavior overall. This work highlights the versatility of oximebridged
dinuclear complexes as functional mimics of oxidoreductase enzymes and their potential
applications in the field of bioinspired catalysis.

References

  • B. Dede, F. Karipcin, F. Arabalı, M. Cengiz, Synthesis, structure, and solvent-extraction properties of tridentate oxime ligands and their cobalt(II), nickel(II), copper(II), zinc(II) complexes, Chemical Papers 64 (1) (2010) 25–33.
  • E. N. Al‐Sabawi, A. S. M. Al‐Janabi, H. M. Jerjis, M. Khairy, O. K. Alduaij, T. A. Yousef, Synthesis, characterization, antibacterial, anticancer, and density‐functional theory studies of nano‐metal(II) oxime complexes, Applied Organometallic Chemistry 36 (5) (2022) e6654.
  • U. Korkmaz, B. T. Findik, B. Dede, F. Karipcin, Synthesis, structural elucidation, in vitro antibacterial activity, DFT calculations, and molecular docking aspects of mixed-ligand complexes of a novel oxime and phenylalanine, Bioorganic Chemistry 121 (2022) 105685.
  • N. Reddig, D. Pursche, M. Kloskowski, C. Slinn, S. M. Baldeau, A. Rompel, Tuning the catalase activity of dinuclear manganese complexes by utilizing different substituted tripodal ligands, European Journal of Inorganic Chemistry 2004 (4) (2004) 879–887.
  • M. Karakoç, B. Dede, M. Erdem-Tunçmen, F. Karipcin, Synthesis, characterization, DFT calculations and catalase-like enzymatic activities of novel hexadentate Schiff base and its manganese complexes, Journal of Molecular Structure 1186 (2019) 250–262.
  • S. Sengupta, S. Khan, S. K. Chattopadhyay, I. Banerjee, T. K. Panda, S. Naskar, Trinuclear copper and mononuclear nickel complexes of oxime containing Schiff bases: Single crystal X-ray structure, catecholase and phenoxazinone synthase activity, catalytic study for the homocoupling of benzyl amines, Polyhedron 182 (2020) 114512.
  • Z. Çetin, B. Dede, A novel Schiff base ligand and its metal complexes: Synthesis, characterization, theoretical calculations, catalase-like and catecholase-like enzymatic activities, Journal of Molecular Liquids 380 (2023) 121636.
  • S. Dasgupta, A. Mandal, D. Samanta, E. Zangrando, S. Maity, D. Das, Catalytic promiscuity of a copper(II)-Mannich base complex having unprecedented radical pathway in catecholase activity, Inorganica Chimica Acta 505 (2020) 119480.
  • G. Görgülü, B. Dede, Catalase, catecholase, and phenoxazinone synthase-like activities of homodinuclear Co(II), Ni(II), Cu(II), and Zn(II) complexes including oxime group, Journal of The Chilean Chemical Society 63 (2018) 4072–4076.
  • S. Kumbhakar, B. Giri, A. Muley, K. S. Karumban, S. Maji, Design, synthesis, structural, spectral, and redox properties and phenoxazinone synthase activity of tripodal pentacoordinate Mn(II) complexes with impressive turnover numbers, Dalton Transactions 50 (45) (2021) 16601–16612.
  • F. Karipcin, B. Dede, M. Cengiz, Synthesis of (2-hydroxo-5-chlorophenylaminoisonitrosoacetyl)phenyl ligands and their complexes: Spectral, thermal and solvent-extraction studies, Russian Journal of Inorganic Chemistry 55 (4) (2010) 530–540.
  • J. Kaizer, R. Csonka, G. Speier, M. Giorgi, M. Réglier, Synthesis, structure and catalase-like activity of new dicopper(II) complexes with phenylglyoxylate and benzoate ligands, Journal of Molecular Catalysis A: Chemical 236 (1-2) (2005) 12–17.
  • J. Reim, B. Krebs, Synthesis, structure and catecholase activity study of dinuclear copper(II) complexes, Journal of the Chemical Society, Dalton Transactions (20) (1997) 3793–3804.
  • J. Kaizer, G. Baráth, R. Csonka, G. Speier, L. Korecz, A. Rockenbauer, L. Párkányi, Catechol oxidase and phenoxazinone synthase activity of a manganese(II) isoindoline complex, Journal of Inorganic Biochemistry 102 (4) (2008) 773–780.
  • M. E. Boutaybi, A. Mouadili, A. Oussaid, S. Mazières, R. Touzani, Z. Bahari, Spectroscopic and electrochemical study of biomimetic catecholase and phenoxazinone synthase activities of in situ complexes bearing pyrazolic ligands, Journal of the Iranian Chemical Society 20 (4) (2023) 961–976.
  • S. Fernández-Fariña, I. Velo-Heleno, L. Rodríguez-Silva, M. Maneiro, A. M. González-Noya, R. Pedrido, A dinuclear copper(II) complex electrochemically obtained via the endogenous hydroxylation of a carbamate Schiff base ligand: Synthesis, structure and catalase activity, International Journal of Molecular Sciences 25 (2024) 2154.
  • V. Y. Kukushkin, A. J. Pombeiro, Oxime and oximate metal complexes: Unconventional synthesis and reactivity, Coordination Chemistry Reviews 181 (1) (1999) 147–175.
  • Q. C. Chen, N. Fridman, B. Tumanskii, Z. Gross, A chromophore-supported structural and functional model of dinuclear copper enzymes, for facilitating mechanism of action studies, Chemical Science 12 (37) (2021) 12445–12450.
  • M. Dolai, U. Saha, A simple Cu(II) complex of phenolic oxime: synthesis, crystal structure, supramolecular interactions, DFT calculation and catecholase activity study, Heliyon 6 (10) (2020) e04942.
  • N. Xiong, G. Zhang, X. Sun, R. Zeng, Metal‐metal cooperation in dinucleating complexes involving late transition metals directed towards organic catalysis, Chinese Journal of Chemistry, 38 (2) (2020) 185–201.
  • M. Bártová, A. Liška, V. Studená, P. Vojtíšek, M. Kašpar, T. Mikysek, L. Česlová, I. Švancara, M. Sýs, Dinuclear copper(II) complexes of 2,6-bis[(N-methylpiperazine-1-yl)methyl]-4-formyl phenol ligand: Promising biomimetic catalysts for dye residue degradation and drug synthesis, International Journal of Molecular Sciences 26 (4) (2025) 1603.
  • A. Sankaran, E. J. P. Malar, V. R. Vijayaraghavan, Kinetic measurements and quantum chemical calculations on low spin Ni (II)/(III) macrocyclic complexes in aqueous and sulphato medium, Journal of Chemical Sciences, 127 (7) (2015) 1287–1298.
  • P. Koley, B. Ghosh, J. Bhattacharyya, A. Hazari, Phenoxazinone synthase-like activity: Schiff base bound model complexes, Molecular Catalysis 569 (2024) 114523.
  • A. S. Thennarasu, T. P. Mohammed, M. Sankaralingam, Mononuclear copper (II) Schiff base complexes as effective models for phenoxazinone synthase, New Journal of Chemistry 46 (45) (2022) 21684–21694.
  • B. Dede, E. Cicek, F. Karipcin, Synthesis, characterization of novel dinuclear Co(II)-Cu(II) complexes and investigation of their catecholase and catalase-like activities, Acta Physica Polonica A 129 (2) (2016) 203–207.
  • M. Garai, D. Dey, H. R. Yadav, A. R. Choudhury, M. Maji, B. Biswas, Catalytic fate of two copper complexes towards phenoxazinone synthase and catechol dioxygenase activity, ChemistrySelect 2 (34) (2017) 11040–11047.
  • F. Karipcin, B. Dede, I. Ozmen, M. Celik, E. Ozkan, Mono-, trinuclear nickel(II) and copper(II) dioxime complexes: Synthesis, characterization, catecholase and catalase-like activities, DNA cleavage studies, Journal of the Chilean Chemical Society 59 (3) (2014) 2539–2544.
  • A. E. M. M. Ramadan, S. Y. Shaban, M. M. Ibrahim, S. A. Sallam, F. I. El-Shami, S. Al-Juaid, Metformin-based copper(II) complexes: synthesis, structural characterization and mimicking activity of catechol oxidase and phenoxazinone synthase, Journal of Materials Science 55 (15) (2020) 6457–6481.
  • J. J. Zhang, Q. H. Luo, C. Y. Duan, Z. L. Wang, Y. H. Mei, Synthesis, crystal structure and properties of a new dinuclear manganese (III) complex: A mimic for catalase, Journal of Inorganic Biochemistry 86 (2-3) (2001) 573–579.
  • F. Karipcin, B. Culu, S. K. Sharma, K. Qanungo, Cyano‐Bridged ‘Oximato’Complexes: Synthesis, Structure, and Catalase‐Like Activities, Helvetica Chimica Acta 95 (4) (2012) 647–659.
There are 30 citations in total.

Details

Primary Language English
Subjects Biologically Active Molecules
Journal Section Research Article
Authors

Gamze Özdemir 0009-0003-9782-1998

Bülent Dede 0000-0003-1416-7373

Submission Date August 21, 2025
Acceptance Date October 18, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 11 Issue: 4

Cite

APA Özdemir, G., & Dede, B. (2025). Multi-Enzyme Mimicry by Dinuclear Transition Metal Complexes with Oxime Ligand. Journal of Advanced Research in Natural and Applied Sciences, 11(4), 369-381. https://doi.org/10.28979/jarnas.1769716
AMA Özdemir G, Dede B. Multi-Enzyme Mimicry by Dinuclear Transition Metal Complexes with Oxime Ligand. JARNAS. December 2025;11(4):369-381. doi:10.28979/jarnas.1769716
Chicago Özdemir, Gamze, and Bülent Dede. “Multi-Enzyme Mimicry by Dinuclear Transition Metal Complexes With Oxime Ligand”. Journal of Advanced Research in Natural and Applied Sciences 11, no. 4 (December 2025): 369-81. https://doi.org/10.28979/jarnas.1769716.
EndNote Özdemir G, Dede B (December 1, 2025) Multi-Enzyme Mimicry by Dinuclear Transition Metal Complexes with Oxime Ligand. Journal of Advanced Research in Natural and Applied Sciences 11 4 369–381.
IEEE G. Özdemir and B. Dede, “Multi-Enzyme Mimicry by Dinuclear Transition Metal Complexes with Oxime Ligand”, JARNAS, vol. 11, no. 4, pp. 369–381, 2025, doi: 10.28979/jarnas.1769716.
ISNAD Özdemir, Gamze - Dede, Bülent. “Multi-Enzyme Mimicry by Dinuclear Transition Metal Complexes With Oxime Ligand”. Journal of Advanced Research in Natural and Applied Sciences 11/4 (December2025), 369-381. https://doi.org/10.28979/jarnas.1769716.
JAMA Özdemir G, Dede B. Multi-Enzyme Mimicry by Dinuclear Transition Metal Complexes with Oxime Ligand. JARNAS. 2025;11:369–381.
MLA Özdemir, Gamze and Bülent Dede. “Multi-Enzyme Mimicry by Dinuclear Transition Metal Complexes With Oxime Ligand”. Journal of Advanced Research in Natural and Applied Sciences, vol. 11, no. 4, 2025, pp. 369-81, doi:10.28979/jarnas.1769716.
Vancouver Özdemir G, Dede B. Multi-Enzyme Mimicry by Dinuclear Transition Metal Complexes with Oxime Ligand. JARNAS. 2025;11(4):369-81.


TR Dizin 20466


SAO/NASA Astrophysics Data System (ADS)    34270

                                                   American Chemical Society-Chemical Abstracts Service CAS    34922 


DOAJ 32869

EBSCO 32870

Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).