Research Article
BibTex RIS Cite

Investigation of the Microstructural and Mechanical Properties of Periclase- and Zeolite-Doped Quartz Ceramic Membranes

Year 2025, Volume: 11 Issue: 4, 412 - 428, 31.12.2025
https://doi.org/10.28979/jarnas.1797387

Abstract

Currently, research focuses on traditional ceramic raw materials that are economical for membrane production. This study investigates the microstructural effects of adding zeolite and periclase to quartz raw materials of varying grain sizes on the transformation of quartz to cristobalite, as well as the changes in porosity and distribution that occur during cristobalite production. For this purpose, structures obtained from quartz (60 wt%)-zeolite (20 wt%)-periclase (20 wt%) mixture powders were separately ground in a ball mill for 6 h as wet grinding and then dried. Each ceramic powder was separated into -125+75, -75+45, -45+20, and -20 μm grain size ranges. After being shaped under 100 MPa pressure, they were sintered at 1100, 1150, and 1200°C. Mineralogical analysis, microstructural development, pore size distribution, adsorption isotherms, and mechanical behavior were investigated. The influence of grain size and sintering temperature on the formation of cristobalite, pore size distribution, and pore volume in porous ceramics was examined independently of composition. The sample passing through the -20 µm sieve and sintered at 1150 °C exhibited the highest adsorption volume of 0.89 P/P₀ at high pressure, corresponding to 0.39 cm³/g, compared to samples sieved through other aperture sizes. This sample also demonstrated the greatest strength, measuring 28.10 MPa.

Project Number

FYL-2024-4754.

Thanks

This work was supported by the Office of Scientific Research Projects Coordination at Çanakkale Onsekiz Mart University, Grant number: FYL-2024-4754.

References

  • C. Li, W. Sun, Z. Lu, X. Ao, S. Li, Ceramic nanocomposite membranes and membrane fouling: A Review, Water Research 175 (2020) 115674.
  • S.L. Sandhya Rani, R.V. Kumar, Insights on applications of low-cost ceramic membranes in wastewater treatment: A mini-review, Case Studies in Chemical and Environmental Engineering 4 (2021) 100149.
  • S. Mestre, A. Gozalbo, M.M. Lorente-Ayza, E. Sánchez, Low-cost ceramic membranes: A research opportunity for industrial application, Journal of the European Ceramic Society 39 (12) (2019) 3392–3407.
  • A. Abdullayev, M. Bekheet, D. Hanaor, A. Gurlo, Materials and applications for low-cost ceramic membranes, Membranes 9 (9) (2019) 105.
  • M. Issaoui, L. Limousy, Low-cost ceramic membranes: Synthesis, classifications, and applications, Comptes Rendus Chimie 22 (2–3) (2018) 175–187.
  • M. Boutaleb, K. Tabit, M. Mansori, L. Saâdi, M. Waqif, Development of low-cost clayey ceramic filtering membrane with controllable porosity and high mechanical strength, Ceramics International 50 (18) (2024) 32771–32782.
  • Z. Fu, Z. Zhou, Z. Liu, H. Yang, Z. Chen, Feasibility and challenges of low-cost ceramic membranes in water treatment applications, Desalination and Water Treatment 320 (2024) 100739.
  • A. Samadi, L. Gao, L. Kong, Y. Orooji, S. Zhao, Waste-derived low-cost ceramic membranes for water treatment: Opportunities, challenges and future directions, Resources, Conservation and Recycling 185 (2022) 106497.
  • C. Silveira, J. Mulinari, A. D. Junior, A. Ambrosi, D. Hotza, M. Di Luccio, Low-cost ceramic membranes prepared from kaolin and quartz via tape casting using different pore formers, Open Ceramics 22 (2025) 100765.
  • L. Sun, Z. Wang, B. Gao, Ceramic membranes originated from cost-effective and abundant natural minerals and industrial wastes for broad applications – A review, Desalination and Water Treatment 201 (2020) 121–138.
  • O. Şan, S. Abalı, Hoşten, Fabrication of microporous ceramics from ceramic powders of quartz–natural zeolite mixtures, Ceramics International 29 (8) (2003) 927–931.
  • L. T. Yogarathinam, J. Usman, M. H. Othman, A. F. Ismail, P. S. Goh, A. Gangasalam, M. R. Adam, Low-cost silica based ceramic supported thin film composite hollow fiber membrane from guinea corn husk ash for efficient removal of microplastic from aqueous solution, Journal of Hazardous Materials 424 (2022) 127298.
  • X. Jin, X. Wu, D. Ng, B.D. Freeman, T. He, Z. Xie, Challenges and prospects of microporous membranes for high‐temperature hydrogen separation, Small Structures 6 (2024).
  • X. Peng, L. Chen, L. You, Y. Jin, C. Zhang, S. Ren, F. Kapteijn, X. Wang, X. Gu, Improved synthesis of hollow fiber SSZ‐13 zeolite membranes for high‐pressure CO2/CH4 separation, Angewandte Chemie International Edition 63 (2024).
  • R. Mahdavi Far, B. Van der Bruggen, A. Verliefde, E. Cornelissen, A review of zeolite materials used in membranes for water purification: History, applications, challenges and future trends, Journal of Chemical Technology & Biotechnology 97 (3) (2021) 575–596.
  • W. Peng, Z. Chen, W. Yan, Y. Liu, G. Li, Impact of functional coatings on microstructure and properties of periclase-magnesium aluminate spinel ceramic filter and its purification capacity on molten steel, Ceramics International 50 (12) (2024) 25293–25303.
  • W. Peng, Z. Chen, W. Yan, J. Chen, G. Li, Y. Li, Microstructure and properties of ceramic filter containing porous MgO coating and its filtration of Al2O3 inclusions in molten steel, Ceramics International 50 (1) (2023) 218–229.
  • V. G. Leonov, G. A. Afonina, V. N. Demkin, Preparation of porous periclase ceramic, Refractories and Industrial Ceramics 56 (5) (2016) 486–489.
  • C. Algieri, E. Drioli, Zeolite membranes: Synthesis and applications, Separation and Purification Technology 278 (5) (2021) 119295.
  • N. Balaba, J. de Primo, A. R. Sotiles, S. Jaerger, D. F. Horsth, C. Bittencourt, F. Anaissi, Synthesis of periclase phase (MgO) from colloidal cassava starch suspension, dual application: Cr(III) removal and pigment reuse, Physchem 4 (1) (2024) 61–77.
  • S. L. Sandhya Rani, R.V. Kumar, Insights on applications of low-cost ceramic membranes in wastewater treatment: A mini-review, Case Studies in Chemical and Environmental Engineering 4 (404) (2021) 100149.
  • J. Zhu, D. Zhang, Q. Yu, L. Yu, H. Liu, S. Yu, E. Ayman, Y. Hu, G. Gong, Polycarbosilane-derived porous ceramic thin membranes with enhanced mechanical strength and tunable crystal structures for oily wastewater treatment, Separation and Purification Technology 376 (2025) 133898.
  • M. Gorea, M.-A. Naghiu, A. Avram, I. Petean, A. Mocanu, M. Tomoaia-Cotisel, Novel porous forsterite ceramics biocompatibility and bioactivity evaluation, Revista de Chimie 71 (2) (2020) 343–351.
  • Z. Shmueli, I. Polishchuk, A. Katsman, B. Pokroy, Controlling cristobalite formation in fused silica via particle size and treatment atmosphere adjustment during ceramic processing, Ceramics International, 51 (26) (2025).
  • N. Zeren, S. Abalı, Effect of synthesis conditions on cristobalite crystallization in low-cost ceramic membranes, Journal of Ceramic Processing Research 26 (2) (2025) 231–238.
  • H. Song, W. Xuan, X. Zhou, P. Chen, B. Wang, Z. Yang, T. Tu, Z. Ren, Effect of MgO on phase transformation and microstructural properties of silica-based ceramic cores, Ceramics International 51 (12) (2025) 25520–25530.
  • L. H. Wang, B.J. Tsai, The sintering and crystallization of colloidal silica gel, Materials Letters 43 (5) (2000) 309–314.
  • L. Lermusiaux, A. Mazel, A. Carretero-Genevrier, C. Sanchez, G. L. Drisko, Metal-induced crystallization in metal oxides, Accounts of Chemical Research 55 (2) (2022) 171–185.
  • B. K. Nandi, R. Uppaluri, M. K. Purkait, Preparation and characterization of low cost ceramic membranes for micro-filtration applications, Applied Clay Science 42 (1-2) (2008) 102–110.
  • K. S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984), Pure and Applied Chemistry 57 (4) (1985) 603-619.
  • H. H. Abo-Almaged, A. A. Gaber, Synthesis and characterization of nano-hydroxyapatite membranes for water desalination, Materials Today Communications 13 (2017) 186–191.
There are 31 citations in total.

Details

Primary Language English
Subjects Ceramics in Materials Engineering
Journal Section Research Article
Authors

Tuğçe Güç 0009-0008-4077-2976

Serkan Abalı 0000-0002-8881-9963

Project Number FYL-2024-4754.
Submission Date October 5, 2025
Acceptance Date December 22, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 11 Issue: 4

Cite

APA Güç, T., & Abalı, S. (2025). Investigation of the Microstructural and Mechanical Properties of Periclase- and Zeolite-Doped Quartz Ceramic Membranes. Journal of Advanced Research in Natural and Applied Sciences, 11(4), 412-428. https://doi.org/10.28979/jarnas.1797387
AMA Güç T, Abalı S. Investigation of the Microstructural and Mechanical Properties of Periclase- and Zeolite-Doped Quartz Ceramic Membranes. JARNAS. December 2025;11(4):412-428. doi:10.28979/jarnas.1797387
Chicago Güç, Tuğçe, and Serkan Abalı. “Investigation of the Microstructural and Mechanical Properties of Periclase- and Zeolite-Doped Quartz Ceramic Membranes”. Journal of Advanced Research in Natural and Applied Sciences 11, no. 4 (December 2025): 412-28. https://doi.org/10.28979/jarnas.1797387.
EndNote Güç T, Abalı S (December 1, 2025) Investigation of the Microstructural and Mechanical Properties of Periclase- and Zeolite-Doped Quartz Ceramic Membranes. Journal of Advanced Research in Natural and Applied Sciences 11 4 412–428.
IEEE T. Güç and S. Abalı, “Investigation of the Microstructural and Mechanical Properties of Periclase- and Zeolite-Doped Quartz Ceramic Membranes”, JARNAS, vol. 11, no. 4, pp. 412–428, 2025, doi: 10.28979/jarnas.1797387.
ISNAD Güç, Tuğçe - Abalı, Serkan. “Investigation of the Microstructural and Mechanical Properties of Periclase- and Zeolite-Doped Quartz Ceramic Membranes”. Journal of Advanced Research in Natural and Applied Sciences 11/4 (December2025), 412-428. https://doi.org/10.28979/jarnas.1797387.
JAMA Güç T, Abalı S. Investigation of the Microstructural and Mechanical Properties of Periclase- and Zeolite-Doped Quartz Ceramic Membranes. JARNAS. 2025;11:412–428.
MLA Güç, Tuğçe and Serkan Abalı. “Investigation of the Microstructural and Mechanical Properties of Periclase- and Zeolite-Doped Quartz Ceramic Membranes”. Journal of Advanced Research in Natural and Applied Sciences, vol. 11, no. 4, 2025, pp. 412-28, doi:10.28979/jarnas.1797387.
Vancouver Güç T, Abalı S. Investigation of the Microstructural and Mechanical Properties of Periclase- and Zeolite-Doped Quartz Ceramic Membranes. JARNAS. 2025;11(4):412-28.


TR Dizin 20466


SAO/NASA Astrophysics Data System (ADS)    34270

                                                   American Chemical Society-Chemical Abstracts Service CAS    34922 


DOAJ 32869

EBSCO 32870

Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).