Araştırma Makalesi
BibTex RIS Kaynak Göster

Deniz Ekosisteminde Bakteriyel Roller; Türkiye Denizleri Örneği

Yıl 2020, Cilt: 6 Sayı: 2, 217 - 230, 29.12.2020
https://doi.org/10.28979/jarnas.844769

Öz

Sucul ekosistemlerde bakterilerin organik maddelerin bozunma süreçlerinde ve besin yenilenmesinde önemli bir role sahip olduğu bilinmektedir. Bu sebeple bakteriyel fonksiyonların tanımlanması için çevresel koşulların değişkenliği-ne bağlı olarak bakteriyel metabolik cevabın farklılığını ortaya koymak deniz ekosisteminin bakteriyolojik verilerle tanımlanması açısından önem taşımaktadır. Bu çalışmada 2000-2016 yılları arasında Türkiye Denizlerinden farklı çalışmalar kapsamında aseptik koşullarda toplanan deniz suyu örneklerinden izole edilen ve stoklanan Gram nega-tif, Gram pozitif ve Bacilli bakteri izolatlarının metabolik özellikleri bakterilerin substratlara karşı verdikleri reaksi-yon açısından değerlendirilerek, coğrafik olarak heterotrofik aktivite farklılıkları tanımlanmıştır. Ayrıca metabolik olarak aktif bakteri frekansının bölgesel farklılıkları değerlendirilmiştir. Deniz suyu örneklerinde kültür edilebilir bakterilerin izolasyonu yayma plak metodu kullanılarak yapılmış, saflaştırılan izolatların metabolik tanımlamaları için VITEK2 Compact 30 mikro tanımlama sistemi kullanılmıştır. Elde edilen bakterilerin substratlara karşı reaksi-yonları ve bakteriyel metabolik aktivasyon düzeylerine yönelik veriler Türkiye Denizlerinde bakteriyel oluşumların çevresel faktörlere maruz kalış şekline göre karakterize olmuştur. Kıyısal alanlarda karbonhidrat metabolizması ile ilgili enzimleri üreten ayrıca lipolitik ve proteolitik enzim aktivitesine sahip Bacilli, Gammaproteobacteria, Alphapro-teobacteria, Betaproteobacteria, Actinobacteria, Flavobacteria ve Sphingobacteria sınıflarına ait izolatların yüksek düzeyde bulunması karasal kaynaklı insan aktivitesinin kıyısal alanlarda baskısının bakteri metabolizmasına bağlı olarak tanımlanabileceğini göstermiştir. Bu çalışma ile 2000-2016 yılları arasında farklı çalışmalarımızla Türkiye Denizlerinden izole edilen bakterilerin enzim profillerine bağlı metabolik özelliklerinin karşılaştırılması yapılarak deniz alanlarımızın bakteriyel karakterleri karşılaştırılmış ve coğrafik alanlara göre ekosistem fonksiyonlarına yönelik veriler sağlanmıştır.

Destekleyen Kurum

TÜBİTAK ve İ.Ü. BAP BİRİMİ

Proje Numarası

105Y039 110Y243, 12Y236, 114Y690 - 588/1408, 20928, 3137, 24579, 39553, 17653

Teşekkür

Bu çalışma Türkiye Denizlerinde 2000 yılından bu yana gerçekleştirdiğimiz farklı proje verile-rinin birlikte genel değerlendirmelerini kapsamaktadır. Desteklerinden dolayı TÜBİTAK (Pro-jeler: 105Y039 110Y243, 12Y236, 114Y690) ve İ.Ü. BAP birimine (Projeler: 588/1408, 20928, 3137, 24579, 39553, 17653) teşekkür ederiz.

Kaynakça

  • Altuğ G., Çardak M., Gürün S., Çiftçi P.S. (2010a). Biodiversity of culturable aerobic heterotrophic bacteria in the coastal areas of Syria, Lebanon and the offshore area in the Northern Aegean Sea. The International Conferance on Biodiversity of the Aquatic Environment. Towards a Diverse and Sustainable World. Syria.
  • Altuğ G., Gürün S., Çiftçi Türetken P.S., Hulyar O. (2010b). Marmara Denizi, İstanbul İli kıyısal alanında patojen bakteriler ve bakteriyolojik kirlilik. Marmara Denizi 2010 Sempozyumu, İstanbul, Türkiye, 25-26 Eylül 2010, no.32, ss.422–429. Erişim adresi: http://tudav.org/wp-content/uploads/2018/04/content_Marmara_Denizi_2010_Sempozyumu.pdf
  • Altuğ G., Aktan Y., Oral M., Topaloğlu B., Dede A., Keskin Ç., İşinibilir M., Çardak M., Çiftçi P.S. (2011). Biodiversity of the northern Aegean Sea and southern part of the Sea of Marmara, Turkey. Marine Biodiversity Records, 4, 1–17. https://doi.org/10.1017/S1755267211000662
  • Altuğ G., Çardak M., Çiftçi P. S. Gürün, S. (2012a). First records and micro-geographical variations of culturable heterotrophic bacteria in an inner sea (the Sea of Marmara) between the Mediterranean and the Black Sea, Turkey. Turkish Journal of Biology, 37, 184–90. https://doi.org/10.3906/biy-1112-21
  • Altuğ G., Gurun S., Cardak M., Ciftci P. S., Kalkan S. (2012b). The occurrence of pathogenic bacteria in some ships’ ballast water incoming from various marine regions to the Sea of Marmara, Turkey. Marine Environmental Research, 81, 35–42. https://doi.org/10.1016/j.marenvres.2012.08.005
  • Altuğ G., Saraç A., Ergüner B., Yücetürk B., Yüksel B., Sağıroğlu M.S., ve ark. (2016). Karadeniz’in oksik, suboksik ve anoksik zonlarının metagenomik örneklerinin mikrobiyal çeşitliliği Sinop, Türkiye, Türkiye Deniz Bilimleri Kongresi, Ankara, Türkiye, 31 Mayıs - 3 Haziran 2016, ss.98–99.
  • Antunes J., Leao P., Vasconcelos V. (2019). Marine biofilms: diversity of communities and of chemical cues. Environmental Microbiology Reports, 11(3), 287–305. https://doi.org/10.1111/1758-2229.12694
  • Arnosti C., Durkin S., Jeffrey W.H. (2005). Patterns of extracellular enzyme activities among pelagic marine microbial communities: implications for cycling of dissolvedorganic carbon. Aquatic Microbial Ecology, 38, 135–45. http://doi.org/10.3354/ame038135
  • Austin B. (1988). Marine Microbiology. Cambridge University Press, Cambridge, 0 521 32252 9.
  • Azam, F., Cho, B.C. (1987). Bacterial utilization of organic matter in the sea, In: Ecology of microbial communities. (Fletcher M. Ed.) Cambridge University Press, Cambridge, 261–268.
  • Azam, F., Malfatti, F. (2007). Microbial structuring of marine ecosystems. Nature Reviews Microbiology, 5, 782–791. https://doi.org/10.1038/nrmicro1747 Batra N., Singh J., Banerjee U.C., Patnaik P.R., Sobti R.C. (2002). Production and characterization of a thermostable ß-galactosidase from Bacillus coagulans RCS3. Biotechnology and Applied Biochemistry, 36, 1–6. https://doi.org/10.1042/ba20010091
  • Benincasa M., Contiero J., Manresa M.A., Moraes I.O. (2002a). Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. Journal of Food Engineering, 54, 283–288. https://doi.org/10.1016/S0260-8774(01)00214-X
  • Benincasa M., Abalos A., Oliveira I., Manresa A. (2002b). Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie van Leeuwenhoek, 85, 1–8. https://doi.org/10.1023/B:ANTO.0000020148.45523.41
  • Bolhuis H., Cretoiu M.S. (2016). What is so special about marine microorganisms? Introduction to the marine microbiome-from diversity to biotechnological potential. In: Stal L., Cretoiu M. (eds) The Marine Microbiome. Springer, Cham
  • Borrego, J.J., Arrabal, A., De Vicente, A., Gomez, L.F., Romero,P. (1983). Study of microbial inactivation in the marine environment. Journal (Water Pollution Control Federation), 55(3), 297–302. Erişim adresi: https://www.jstor.org/stable/pdf/25041851.pdf
  • Böllmann, J., Martienssen, M. (2020). Comparison of different media for the detection of denitrifying and nitrate reducing bacteria in mesotrophic aquatic environments by the most probable number method. Journal of Microbiological Methods, 168, 105808. https://doi.org/10.1016/j.mimet.2019.105808
  • Catão ECP, Pollet T, Misson B, Garnier C, Ghiglione J-F, Barry-Martinet R, Maintenay M, Bressy C and Briand J-F. (2019). Shear Stress as a Major Driver of Marine Biofilm Communities in the NW Mediterranean Sea. Frontiers in Microbiology, 10, 1768. https://doi.org/10.3389/fmicb.2019.01768
  • Caruso G. (2010). Leucine aminopeptidase, beta-glucosidase and alkaline phosphatase activity rates and their significance in nutrient cycles in some coastal Mediterranean sites. Marine Drugs, 8, 916–940. https://doi.org/10.3390/md8040916
  • Carlson, C.A., Del Giorgio, P.A., Herndl, G.J. (2007). Microbes and the dissipation of energy and respiration: from cells to ecosystems. Oceanography, 20, 89–100. https://doi.org/10.5670/oceanog.2007.52
  • Chang J. S., Chou C., Lin Y. C., Lin P. J., Ho J. Y., Hu T. L. (2001). Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Research, 35(12), 2841–2850. https://doi.org/10.1016/s0043-1354(00)00581-9
  • Cornax, R., Morinigo, M.A., Romero, P., Borrego, J.J. (1990). Survival of pathogenic microorganisms in sea water. Current Microbiology, 20, 293–298. https://doi.org/10.1007/BF02091908
  • Çardak M., Altug G., Çiftçi P.S. (2015). Variations of culturable and metabolicallyactive bacteria in a stratified water column: the example of Istanbul and Çanakkale Straits, Turkey. International Journal of Environmental Research, 9(4), 1333–1340. https://doi.org/10.22059/IJER.2015.1025
  • Fuhrman, J.A., McCallum, K., Davis A.L. (1993). Phylogenetic diversity of marine microbial communities from the Atlantic and Pacific oceans. Applied Environmental Microbiology, 59, 1294–1302. Erişim adresi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC182080/
  • Gasol J.M., Pinhassi J., Alonso-Saez L., Ducklow H., Herndl G.J., Koblízek M., Labrenz M., Luo Y., Morán X.A.G., Reinthaler T., Simon M. (2008). Towards a better understanding of microbial carbon flux in the sea. Aquatic Microbial Ecology, 53, 21–38. https://doi.org/10.3354/ame01230
  • Gawande B. N., Goel A., Patkar A. Y., Nene S. N. (1999). Puri®cation and properties of a novel raw starch degrading cyclomaltodextrin glucanotransferase from Bacillus firmus. Applied Microbiology and Biotechnology, 51, 504–509. https://doi.org/10.1007/s002530051424
  • Heissenberger A., Leppard G.G., Herndl J.G. (1996). Relationship between the intracellular integrity and morpology of the capsular envelope in attached and free-living marine bacteria. Applied Environmental Microbiology, 62, 4521–4528. Erişim adresi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1389004/pdf/hw4521.pdf
  • Ilhan S., Nourbakhsh M.N., Kiliçarslan S., Ozdag H. (2004). Removal of Chromium, lead and copper ions from ındustrıal waste waters by Staphylococcus saprophyticus. Turkish Electronic Journal of Biotechnology, 2, 50–57. Erişim adresi: https://www.researchgate.net/publication/228635777_Removal_of_chromium_lead_and_copper_ions_from_industrial_waste_waters_by_Staphylococcus_saprophyticus
  • Kalkan S., Altuğ G. (2015). Bio-indicator bacteria & environmental variables of the coastal zones: The example of the Gulluk Bay, Aegean Sea, Turkey. Marine Pollution Bulletin, 95, 380–384. https://doi.org/10.1016/j.marpolbul.2015.04.017
  • Kim P.I., Sohng J. K., Sung C., Joo H.S., Kim E.M., Yamaguchi T., Park D., Kim B.G. (2010). Characterization and structure identification of an antimicrobial peptide hominicin, produced by Staphylococcus hominis MBBL 2–9. Biochemical and Biophysical Research Communications, 399, 133–138. https://doi.org/10.1016/j.bbrc.2010.07.024
  • Kim A. H., Kim S., Park S., Kim H. K. (2013a). Biodiesel production using cross-linked Staphylococcus haemolyticus lipase immobilized on solid polymeric carriers. Journal of Molecular Catalysis B: Enzymatic, 85-86, 10–16. https://doi.org/10.1016/j.molcatb.2012.08.012
  • Kim S., Song J. K., Kim H. K. (2013b). Cell surface display of Staphylococcus haemolyticus L62 lipase in Escherichia coli and its application as a whole cell biocatalyst forbiodiesel production. Journal of Molecular Catalysis B: Enzymatic, 97, 54–61. https://doi.org/10.1016/j.molcatb.2013.07.017
  • Kremen C. (2005). Managing ecosystem services: what do we need to know about their ecology. Ecology Letters, 8, 468–79. https://doi.org/10.1111/j.1461-0248.2005.00751.x
  • Kumar R., Mishra A., Jha B. (2019). Bacterial community structure and functional diversity in subsurface seawater from the western coastal ecosystem of the Arabian Sea, India. Gene, 701, 55–64. https://doi.org/10.1016/j.gene.2019.02.099
  • La Ferla R., Azzaro, F., Azzaro, M., ve ark. (2005). Microbial processes contribution to carbon biogeochemistry in the Mediterranean sea: spatial and temporal scale variability of activities and biomass. Journal of Marine System, 57, 146–166. https://doi.org/10.1016/j.jmarsys.2005.05.001
  • Lailaja V. P., Chandrasekaran M. (2013). Detergent compatible alkaline lipase produced by marine Bacillus smithii BTMS 11. World Journal of Biotechnology, 29, 1349–1360. https://doi.org/10.1007/s11274-013-1298-0
  • Lebaron, P., Bernard, L., Baudart, J., Courties, C. (1999). The ecological role of VBNC cells in the marine environment, Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology Bell CR, Brylinsky M, Johnson-Green P (eds) Atlantic Canada Society for Microbial Ecology, Halifax, Canada.
  • Mosbah H., Sayari A., Mejdoub H., Dhouib H., Gargouri Y. (2005). Biochemical and molecular characterization of Staphylococcus xylosus lipase. Biochimica et Biophysica Acta, 1723, 282– 291. https://doi.org/10.1016/j.bbagen.2005.03.006
  • Mosbah H., Sayari A., Bezzine S., Gargouri Y. (2006). Expression, purification, and characterization of his-tagged Staphylococcus xylosus lipase wild-type and its mutant Asp 290 Ala. Protein Expression and Purification, 47, 516–523. https://doi.org/10.1016/j.pep.2005.11.013
  • Narayanan A., Ramana K.V. (2012). Polyhydroxybutyrate production in Bacillus mycoides DFC1 using response surface optimization for physico-chemical process parameters. 3 Biotech, 2(4), 287–296. https://doi.org/10.1007/s13205-012-0054-8
  • Pincus D. H. (2010). Microbial identification using the bioMerieux VITEK 2 system, Encyclopedia of Rapid Microbiological Methods, Michael, J.M., Ed.; PDS/DHI. Erişim adresi: https://store.pda.org/TableOfContents/ERMM_V2_Ch01.pdf
  • Pinhassi J., U. L. Zweifel Hagström, Å. (1997). Dominant marine bacterioplankton species found among colony-forming bacteria. Applied and Environmental Microbiology, 63, 3359–3366. Erişim adresi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC168641/pdf/633359.pdf
  • Plante C.J., Shriwer A.G. (1998). Differential lysis of sedimentary bacteria by Arenicola marina L., examination of cell wall structure and exopolymeric capsules as correlates. Journal of Experimental Marine Biology and Ecology, 229, 35–52. https://doi.org/10.1016/S0022-0981(98)00039-2
  • Pomeroy L. R., Hanson R. B., McGillivary P. A., Sherr B. F., Kirchman D., Deibel D. (1984). Microbiology and chemistry of fecal products of pelagic tunicates: rates and fates. Bulletin of Marine Science, 35, 426–439. Erişim adresi: https://www.ingentaconnect.com/contentone/umrsmas/bullmar/1984/00000035/00000003/art00015
  • Rehnstam A.S., Backman S., Smith D.C., Azam F., Hagström A. (1993). Blooms of sequence-specific culturable bacteria in the sea. FEMS Microbiology Ecology, 102, 161-166. https://doi.org/10.1111/j.1574-6968.1993.tb05806.x
  • Spang A., Offre P. (2019). Towards a systematic understanding of differences between archaeal and bacterial diversity. Environmental Microbiology Reports. 11(1), 9–12. https://doi.org/10.1111/1758-2229.12701
  • Stoderegger K., Herndl G.J. (2001). Visualization of the exopolysaccharide bacterial capsule and its distribution in oceanic environments. Aquatic Microbial Ecology, 26, 195–199. https://doi.org/10.3354/ame026195
  • Taylor M.W., Radax R., Steger D., Wagner M. (2007). Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiology and Molecular Biology Reviews, 71(2), 295–347. https://doi.org/10.1128/MMBR.00040-06
  • Türetken Çiftçi P.S., Altuğ G. (2016). Bacterial pollution, activity and heterotrophic diversity of the northern part of the Aegean Sea, Turkey. Environmental Monitoring and Assessment, 188. https://doi.org/10.1007/s10661-016-5109-6
  • Ullah R., Yasir M., Bibi F., Abujamel T.S., Hashem A. M., Sohrab S. S., Al-Ansari A., Al-Sofyani A.A., Al-Ghamdi A. K., Al-sieni A., Azhar E. I. (2019). Taxonomic diversity of antimicrobial-resistant bacteria and genes in the Red Sea coast. Science of The Total Environment, 677, 474–483. https://doi.org/10.1016/j.scitotenv.2019.04.283
  • Wolf A., Kramer R., Morbach S. (2003). Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Molecular Microbiolog,. 49(4), 1119-1134. https://doi.org/10.1046/j.1365-2958.2003.03625.x
  • Yeh M.S., Chang J. S. (2004). Bacterial decolorization of an azo dye with a natural isolate of Pseudomonas luteola and genetically modified Escherichia coli. Journal of Chemical Technology and Biotechnology, 79, 1354–1360. https://doi.org/10.1002/jctb.1099
  • Zaccone, R., Caruso, G., Cali, C. (2002). Heterotrophic Bacteria in the Northern Adriatic Sea: seasonal changes and ectoenzyme profile. Marine Environmental Research, 54, 1–19. https://doi.org/10.1016/S0141-1136(02)00089-2

Bacterial Roles in the Marine Ecosystem; A Sample Case of Turkish Marine Bacteria

Yıl 2020, Cilt: 6 Sayı: 2, 217 - 230, 29.12.2020
https://doi.org/10.28979/jarnas.844769

Öz

Abstract − In aquatic ecosystems, bacteria are known to play an important role in the degradation processes of organic substances and in nutritional regeneration. For this reason, it is important to define the functioning of the marine ecosystem to determine the difference of bacterial metabolic response depending on the variability of environmental conditions for the identification of bacterial functions. In this study, metabolic properties of Gram-negative, Gram-positive and Bacilli bacteria isolated and stocked from sea water samples, collected in aseptic conditions, between 2000 and 2016 were evaluated and heterotrophic activity differences were defined geographically, according to the reaction of bacteria against substrates. In addition, regional differences in metabolically active bacterial frequency were evaluated. VITEK2 Compact 30 micro identification system was used for metabolic identification of purified isolates. The data on the reactions of bacteria against substrates and the levels of bacterial metabolic activation were characterized by the way bacterial formations were exposed to environmental factors in the Turkish Seas. The high levels of isolates belonging to Bacilli, Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Actinobacteria, Flavobacterium and Sphingobacterium classes producing enzymes related to carbohydrate metabolism in coastal areas and also having lipolytic and proteolytic enzyme activity showed that the pressures created by terrestrial human activities in coastal areas can be defined depending on bacterial metabolism. With this study, the metabolic properties of bacteria isolated from Turkish Seas were compared with enzyme profiles and the bacterial characters of our marine areas were compared and data regarding ecosystem functions were provided according to geographical areas.

Proje Numarası

105Y039 110Y243, 12Y236, 114Y690 - 588/1408, 20928, 3137, 24579, 39553, 17653

Kaynakça

  • Altuğ G., Çardak M., Gürün S., Çiftçi P.S. (2010a). Biodiversity of culturable aerobic heterotrophic bacteria in the coastal areas of Syria, Lebanon and the offshore area in the Northern Aegean Sea. The International Conferance on Biodiversity of the Aquatic Environment. Towards a Diverse and Sustainable World. Syria.
  • Altuğ G., Gürün S., Çiftçi Türetken P.S., Hulyar O. (2010b). Marmara Denizi, İstanbul İli kıyısal alanında patojen bakteriler ve bakteriyolojik kirlilik. Marmara Denizi 2010 Sempozyumu, İstanbul, Türkiye, 25-26 Eylül 2010, no.32, ss.422–429. Erişim adresi: http://tudav.org/wp-content/uploads/2018/04/content_Marmara_Denizi_2010_Sempozyumu.pdf
  • Altuğ G., Aktan Y., Oral M., Topaloğlu B., Dede A., Keskin Ç., İşinibilir M., Çardak M., Çiftçi P.S. (2011). Biodiversity of the northern Aegean Sea and southern part of the Sea of Marmara, Turkey. Marine Biodiversity Records, 4, 1–17. https://doi.org/10.1017/S1755267211000662
  • Altuğ G., Çardak M., Çiftçi P. S. Gürün, S. (2012a). First records and micro-geographical variations of culturable heterotrophic bacteria in an inner sea (the Sea of Marmara) between the Mediterranean and the Black Sea, Turkey. Turkish Journal of Biology, 37, 184–90. https://doi.org/10.3906/biy-1112-21
  • Altuğ G., Gurun S., Cardak M., Ciftci P. S., Kalkan S. (2012b). The occurrence of pathogenic bacteria in some ships’ ballast water incoming from various marine regions to the Sea of Marmara, Turkey. Marine Environmental Research, 81, 35–42. https://doi.org/10.1016/j.marenvres.2012.08.005
  • Altuğ G., Saraç A., Ergüner B., Yücetürk B., Yüksel B., Sağıroğlu M.S., ve ark. (2016). Karadeniz’in oksik, suboksik ve anoksik zonlarının metagenomik örneklerinin mikrobiyal çeşitliliği Sinop, Türkiye, Türkiye Deniz Bilimleri Kongresi, Ankara, Türkiye, 31 Mayıs - 3 Haziran 2016, ss.98–99.
  • Antunes J., Leao P., Vasconcelos V. (2019). Marine biofilms: diversity of communities and of chemical cues. Environmental Microbiology Reports, 11(3), 287–305. https://doi.org/10.1111/1758-2229.12694
  • Arnosti C., Durkin S., Jeffrey W.H. (2005). Patterns of extracellular enzyme activities among pelagic marine microbial communities: implications for cycling of dissolvedorganic carbon. Aquatic Microbial Ecology, 38, 135–45. http://doi.org/10.3354/ame038135
  • Austin B. (1988). Marine Microbiology. Cambridge University Press, Cambridge, 0 521 32252 9.
  • Azam, F., Cho, B.C. (1987). Bacterial utilization of organic matter in the sea, In: Ecology of microbial communities. (Fletcher M. Ed.) Cambridge University Press, Cambridge, 261–268.
  • Azam, F., Malfatti, F. (2007). Microbial structuring of marine ecosystems. Nature Reviews Microbiology, 5, 782–791. https://doi.org/10.1038/nrmicro1747 Batra N., Singh J., Banerjee U.C., Patnaik P.R., Sobti R.C. (2002). Production and characterization of a thermostable ß-galactosidase from Bacillus coagulans RCS3. Biotechnology and Applied Biochemistry, 36, 1–6. https://doi.org/10.1042/ba20010091
  • Benincasa M., Contiero J., Manresa M.A., Moraes I.O. (2002a). Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. Journal of Food Engineering, 54, 283–288. https://doi.org/10.1016/S0260-8774(01)00214-X
  • Benincasa M., Abalos A., Oliveira I., Manresa A. (2002b). Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie van Leeuwenhoek, 85, 1–8. https://doi.org/10.1023/B:ANTO.0000020148.45523.41
  • Bolhuis H., Cretoiu M.S. (2016). What is so special about marine microorganisms? Introduction to the marine microbiome-from diversity to biotechnological potential. In: Stal L., Cretoiu M. (eds) The Marine Microbiome. Springer, Cham
  • Borrego, J.J., Arrabal, A., De Vicente, A., Gomez, L.F., Romero,P. (1983). Study of microbial inactivation in the marine environment. Journal (Water Pollution Control Federation), 55(3), 297–302. Erişim adresi: https://www.jstor.org/stable/pdf/25041851.pdf
  • Böllmann, J., Martienssen, M. (2020). Comparison of different media for the detection of denitrifying and nitrate reducing bacteria in mesotrophic aquatic environments by the most probable number method. Journal of Microbiological Methods, 168, 105808. https://doi.org/10.1016/j.mimet.2019.105808
  • Catão ECP, Pollet T, Misson B, Garnier C, Ghiglione J-F, Barry-Martinet R, Maintenay M, Bressy C and Briand J-F. (2019). Shear Stress as a Major Driver of Marine Biofilm Communities in the NW Mediterranean Sea. Frontiers in Microbiology, 10, 1768. https://doi.org/10.3389/fmicb.2019.01768
  • Caruso G. (2010). Leucine aminopeptidase, beta-glucosidase and alkaline phosphatase activity rates and their significance in nutrient cycles in some coastal Mediterranean sites. Marine Drugs, 8, 916–940. https://doi.org/10.3390/md8040916
  • Carlson, C.A., Del Giorgio, P.A., Herndl, G.J. (2007). Microbes and the dissipation of energy and respiration: from cells to ecosystems. Oceanography, 20, 89–100. https://doi.org/10.5670/oceanog.2007.52
  • Chang J. S., Chou C., Lin Y. C., Lin P. J., Ho J. Y., Hu T. L. (2001). Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Research, 35(12), 2841–2850. https://doi.org/10.1016/s0043-1354(00)00581-9
  • Cornax, R., Morinigo, M.A., Romero, P., Borrego, J.J. (1990). Survival of pathogenic microorganisms in sea water. Current Microbiology, 20, 293–298. https://doi.org/10.1007/BF02091908
  • Çardak M., Altug G., Çiftçi P.S. (2015). Variations of culturable and metabolicallyactive bacteria in a stratified water column: the example of Istanbul and Çanakkale Straits, Turkey. International Journal of Environmental Research, 9(4), 1333–1340. https://doi.org/10.22059/IJER.2015.1025
  • Fuhrman, J.A., McCallum, K., Davis A.L. (1993). Phylogenetic diversity of marine microbial communities from the Atlantic and Pacific oceans. Applied Environmental Microbiology, 59, 1294–1302. Erişim adresi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC182080/
  • Gasol J.M., Pinhassi J., Alonso-Saez L., Ducklow H., Herndl G.J., Koblízek M., Labrenz M., Luo Y., Morán X.A.G., Reinthaler T., Simon M. (2008). Towards a better understanding of microbial carbon flux in the sea. Aquatic Microbial Ecology, 53, 21–38. https://doi.org/10.3354/ame01230
  • Gawande B. N., Goel A., Patkar A. Y., Nene S. N. (1999). Puri®cation and properties of a novel raw starch degrading cyclomaltodextrin glucanotransferase from Bacillus firmus. Applied Microbiology and Biotechnology, 51, 504–509. https://doi.org/10.1007/s002530051424
  • Heissenberger A., Leppard G.G., Herndl J.G. (1996). Relationship between the intracellular integrity and morpology of the capsular envelope in attached and free-living marine bacteria. Applied Environmental Microbiology, 62, 4521–4528. Erişim adresi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1389004/pdf/hw4521.pdf
  • Ilhan S., Nourbakhsh M.N., Kiliçarslan S., Ozdag H. (2004). Removal of Chromium, lead and copper ions from ındustrıal waste waters by Staphylococcus saprophyticus. Turkish Electronic Journal of Biotechnology, 2, 50–57. Erişim adresi: https://www.researchgate.net/publication/228635777_Removal_of_chromium_lead_and_copper_ions_from_industrial_waste_waters_by_Staphylococcus_saprophyticus
  • Kalkan S., Altuğ G. (2015). Bio-indicator bacteria & environmental variables of the coastal zones: The example of the Gulluk Bay, Aegean Sea, Turkey. Marine Pollution Bulletin, 95, 380–384. https://doi.org/10.1016/j.marpolbul.2015.04.017
  • Kim P.I., Sohng J. K., Sung C., Joo H.S., Kim E.M., Yamaguchi T., Park D., Kim B.G. (2010). Characterization and structure identification of an antimicrobial peptide hominicin, produced by Staphylococcus hominis MBBL 2–9. Biochemical and Biophysical Research Communications, 399, 133–138. https://doi.org/10.1016/j.bbrc.2010.07.024
  • Kim A. H., Kim S., Park S., Kim H. K. (2013a). Biodiesel production using cross-linked Staphylococcus haemolyticus lipase immobilized on solid polymeric carriers. Journal of Molecular Catalysis B: Enzymatic, 85-86, 10–16. https://doi.org/10.1016/j.molcatb.2012.08.012
  • Kim S., Song J. K., Kim H. K. (2013b). Cell surface display of Staphylococcus haemolyticus L62 lipase in Escherichia coli and its application as a whole cell biocatalyst forbiodiesel production. Journal of Molecular Catalysis B: Enzymatic, 97, 54–61. https://doi.org/10.1016/j.molcatb.2013.07.017
  • Kremen C. (2005). Managing ecosystem services: what do we need to know about their ecology. Ecology Letters, 8, 468–79. https://doi.org/10.1111/j.1461-0248.2005.00751.x
  • Kumar R., Mishra A., Jha B. (2019). Bacterial community structure and functional diversity in subsurface seawater from the western coastal ecosystem of the Arabian Sea, India. Gene, 701, 55–64. https://doi.org/10.1016/j.gene.2019.02.099
  • La Ferla R., Azzaro, F., Azzaro, M., ve ark. (2005). Microbial processes contribution to carbon biogeochemistry in the Mediterranean sea: spatial and temporal scale variability of activities and biomass. Journal of Marine System, 57, 146–166. https://doi.org/10.1016/j.jmarsys.2005.05.001
  • Lailaja V. P., Chandrasekaran M. (2013). Detergent compatible alkaline lipase produced by marine Bacillus smithii BTMS 11. World Journal of Biotechnology, 29, 1349–1360. https://doi.org/10.1007/s11274-013-1298-0
  • Lebaron, P., Bernard, L., Baudart, J., Courties, C. (1999). The ecological role of VBNC cells in the marine environment, Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology Bell CR, Brylinsky M, Johnson-Green P (eds) Atlantic Canada Society for Microbial Ecology, Halifax, Canada.
  • Mosbah H., Sayari A., Mejdoub H., Dhouib H., Gargouri Y. (2005). Biochemical and molecular characterization of Staphylococcus xylosus lipase. Biochimica et Biophysica Acta, 1723, 282– 291. https://doi.org/10.1016/j.bbagen.2005.03.006
  • Mosbah H., Sayari A., Bezzine S., Gargouri Y. (2006). Expression, purification, and characterization of his-tagged Staphylococcus xylosus lipase wild-type and its mutant Asp 290 Ala. Protein Expression and Purification, 47, 516–523. https://doi.org/10.1016/j.pep.2005.11.013
  • Narayanan A., Ramana K.V. (2012). Polyhydroxybutyrate production in Bacillus mycoides DFC1 using response surface optimization for physico-chemical process parameters. 3 Biotech, 2(4), 287–296. https://doi.org/10.1007/s13205-012-0054-8
  • Pincus D. H. (2010). Microbial identification using the bioMerieux VITEK 2 system, Encyclopedia of Rapid Microbiological Methods, Michael, J.M., Ed.; PDS/DHI. Erişim adresi: https://store.pda.org/TableOfContents/ERMM_V2_Ch01.pdf
  • Pinhassi J., U. L. Zweifel Hagström, Å. (1997). Dominant marine bacterioplankton species found among colony-forming bacteria. Applied and Environmental Microbiology, 63, 3359–3366. Erişim adresi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC168641/pdf/633359.pdf
  • Plante C.J., Shriwer A.G. (1998). Differential lysis of sedimentary bacteria by Arenicola marina L., examination of cell wall structure and exopolymeric capsules as correlates. Journal of Experimental Marine Biology and Ecology, 229, 35–52. https://doi.org/10.1016/S0022-0981(98)00039-2
  • Pomeroy L. R., Hanson R. B., McGillivary P. A., Sherr B. F., Kirchman D., Deibel D. (1984). Microbiology and chemistry of fecal products of pelagic tunicates: rates and fates. Bulletin of Marine Science, 35, 426–439. Erişim adresi: https://www.ingentaconnect.com/contentone/umrsmas/bullmar/1984/00000035/00000003/art00015
  • Rehnstam A.S., Backman S., Smith D.C., Azam F., Hagström A. (1993). Blooms of sequence-specific culturable bacteria in the sea. FEMS Microbiology Ecology, 102, 161-166. https://doi.org/10.1111/j.1574-6968.1993.tb05806.x
  • Spang A., Offre P. (2019). Towards a systematic understanding of differences between archaeal and bacterial diversity. Environmental Microbiology Reports. 11(1), 9–12. https://doi.org/10.1111/1758-2229.12701
  • Stoderegger K., Herndl G.J. (2001). Visualization of the exopolysaccharide bacterial capsule and its distribution in oceanic environments. Aquatic Microbial Ecology, 26, 195–199. https://doi.org/10.3354/ame026195
  • Taylor M.W., Radax R., Steger D., Wagner M. (2007). Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiology and Molecular Biology Reviews, 71(2), 295–347. https://doi.org/10.1128/MMBR.00040-06
  • Türetken Çiftçi P.S., Altuğ G. (2016). Bacterial pollution, activity and heterotrophic diversity of the northern part of the Aegean Sea, Turkey. Environmental Monitoring and Assessment, 188. https://doi.org/10.1007/s10661-016-5109-6
  • Ullah R., Yasir M., Bibi F., Abujamel T.S., Hashem A. M., Sohrab S. S., Al-Ansari A., Al-Sofyani A.A., Al-Ghamdi A. K., Al-sieni A., Azhar E. I. (2019). Taxonomic diversity of antimicrobial-resistant bacteria and genes in the Red Sea coast. Science of The Total Environment, 677, 474–483. https://doi.org/10.1016/j.scitotenv.2019.04.283
  • Wolf A., Kramer R., Morbach S. (2003). Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Molecular Microbiolog,. 49(4), 1119-1134. https://doi.org/10.1046/j.1365-2958.2003.03625.x
  • Yeh M.S., Chang J. S. (2004). Bacterial decolorization of an azo dye with a natural isolate of Pseudomonas luteola and genetically modified Escherichia coli. Journal of Chemical Technology and Biotechnology, 79, 1354–1360. https://doi.org/10.1002/jctb.1099
  • Zaccone, R., Caruso, G., Cali, C. (2002). Heterotrophic Bacteria in the Northern Adriatic Sea: seasonal changes and ectoenzyme profile. Marine Environmental Research, 54, 1–19. https://doi.org/10.1016/S0141-1136(02)00089-2
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klasik Fizik (Diğer)
Bölüm Makaleler
Yazarlar

Gülşen Altuğ

Mine Çardak Bu kişi benim

Pelin Çiftçi Bu kişi benim

Sevan Gürün Bu kişi benim

Samet Kalkan

Proje Numarası 105Y039 110Y243, 12Y236, 114Y690 - 588/1408, 20928, 3137, 24579, 39553, 17653
Yayımlanma Tarihi 29 Aralık 2020
Gönderilme Tarihi 16 Ekim 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 6 Sayı: 2

Kaynak Göster

APA Altuğ, G., Çardak, M., Çiftçi, P., Gürün, S., vd. (2020). Deniz Ekosisteminde Bakteriyel Roller; Türkiye Denizleri Örneği. Journal of Advanced Research in Natural and Applied Sciences, 6(2), 217-230. https://doi.org/10.28979/jarnas.844769
AMA Altuğ G, Çardak M, Çiftçi P, Gürün S, Kalkan S. Deniz Ekosisteminde Bakteriyel Roller; Türkiye Denizleri Örneği. JARNAS. Aralık 2020;6(2):217-230. doi:10.28979/jarnas.844769
Chicago Altuğ, Gülşen, Mine Çardak, Pelin Çiftçi, Sevan Gürün, ve Samet Kalkan. “Deniz Ekosisteminde Bakteriyel Roller; Türkiye Denizleri Örneği”. Journal of Advanced Research in Natural and Applied Sciences 6, sy. 2 (Aralık 2020): 217-30. https://doi.org/10.28979/jarnas.844769.
EndNote Altuğ G, Çardak M, Çiftçi P, Gürün S, Kalkan S (01 Aralık 2020) Deniz Ekosisteminde Bakteriyel Roller; Türkiye Denizleri Örneği. Journal of Advanced Research in Natural and Applied Sciences 6 2 217–230.
IEEE G. Altuğ, M. Çardak, P. Çiftçi, S. Gürün, ve S. Kalkan, “Deniz Ekosisteminde Bakteriyel Roller; Türkiye Denizleri Örneği”, JARNAS, c. 6, sy. 2, ss. 217–230, 2020, doi: 10.28979/jarnas.844769.
ISNAD Altuğ, Gülşen vd. “Deniz Ekosisteminde Bakteriyel Roller; Türkiye Denizleri Örneği”. Journal of Advanced Research in Natural and Applied Sciences 6/2 (Aralık 2020), 217-230. https://doi.org/10.28979/jarnas.844769.
JAMA Altuğ G, Çardak M, Çiftçi P, Gürün S, Kalkan S. Deniz Ekosisteminde Bakteriyel Roller; Türkiye Denizleri Örneği. JARNAS. 2020;6:217–230.
MLA Altuğ, Gülşen vd. “Deniz Ekosisteminde Bakteriyel Roller; Türkiye Denizleri Örneği”. Journal of Advanced Research in Natural and Applied Sciences, c. 6, sy. 2, 2020, ss. 217-30, doi:10.28979/jarnas.844769.
Vancouver Altuğ G, Çardak M, Çiftçi P, Gürün S, Kalkan S. Deniz Ekosisteminde Bakteriyel Roller; Türkiye Denizleri Örneği. JARNAS. 2020;6(2):217-30.


TR Dizin 20466




Academindex 30370    

SOBİAD 20460               

Scilit 30371                        

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).