Research Article
BibTex RIS Cite

Preparation of black-titanium dioxide nanotubes by thermal decomposition of sodium borohydride

Year 2021, Volume: 7 Issue: 1, 71 - 81, 20.03.2021
https://doi.org/10.28979/jarnas.833273

Abstract

Titanium dioxide is a very attractive material in catalysis. Although the titanium dioxide exhibits superior proper-ties in ultra violet radiation, activity of the catalyst can be improved by some modifications specially for daylight radiation. Titanium dioxide was colored by thermal decomposition of sodium borohydride at 400 0C. The gray colored nanotube-titanium dioxide obtained where the molar ratio of titanium dioxide to sodium borohydride, 1.2 and 0.6. The black nanotube-titanium dioxide was prepared by making the ratio 0.3. While heterogeneous dispersion observed after coloring of commercial titanium dioxide, all photocatalysts prepared from nanotube-titanium dioxide were perfectly homogeneous after coloring. Structural properties of photocatalysts analysed by using XRD, BET and SEM. The nanotube form of titanium dioxide prepared by hydrothermal method. The nanotube photocatalysts are anatase and have high surface area. The activities of colored nanotubes investigated according to these structural properties. Photocatalysts could not be colored homogeneously with the hydrogen reduction process but efficient reduction and coloration obtained with sodium borohydride. The visible region activities of photocatalysts increased by coloring with sodium borohydride compared to coloring by hydrogen. While the surface structure is important, all prepared nanotube-titanium photocatalysts exhibited more efficient color removal yield with regard to commercial one. More active catalysts prepared for absorption of daylight energy and 98.4 % color removal yield from 30 ppm methylene blue solution obtained with black nanotube-titanium dioxide photocatalyst.

Supporting Institution

Kocaeli Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

2017/127

Thanks

This work was funded by Kocaeli University Scientific Research Coordination Unit with the project number 2017/127.

References

  • Ariyanti, D., Mills, L., Dong, J., Yao, Y., & Gao, W. (2017). NaBH4 modified TiO2: Defect site enhancement related to its photocatalytic activity. Materials Chemistry and Physics, 199(2017), 571-576. DOI: https://doi.org/10.1016/j.matchemphys.2017.07.054
  • Chen, S., Zhu, Y., Li, W., Liu, W., Li, L., Yang, Z., Liu, C., Yao, W., Lu, X., & Feng, X. (2010). Synthesis, Features, and Applications of Mesoporous Titania with TiO2 (B), Chin. J. Catal., 31(6), 605–614. DOI: https://doi.org/10.1016/S1872-2067(09)60073-5
  • Chen, X., Liu, L., Yu, P. Y., & Mao, S. S. (2011). Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 331(6018), 746–750. DOI: https://doi.org/10.1126/science.1200448
  • Guo, L. J., Wang, Y. J., & He, T. (2016). Photocatalytic Reduction of CO2 over Heterostructure Semiconductors into Value‐Added Chemicals. The Chemical Record, 16(4), 1918-1933. DOI: https://doi.org/10.1002/tcr.201600008
  • Haider, A., Jameel, Z. N., & Al-Hussaini, I. H. M. (2019). Review on Titanium Dioxide Applications, Energy Procedia. 157(2019), 17-29. DOI: https://doi.org/10.1016/j.egypro.2018.11.159
  • Kerkez-Kuyumcu, Ö., Kibar, E., Dayıoğlu,K., Gedik, F., Akın, A. N., & Özkara-Aydınoğlu, Ş. (2015). A comparative study for removal of different dyes over M/TiO2 (M = Cu, Ni, Co, Fe, Mn and Cr) photocatalysts under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 311(2015), 176–185. DOI: https://doi.org/10.1016/j.jphotochem.2015.05.037
  • León-Ríos, S., González, R. E., Fuentes, S., Ángel, E. C., Echeverría, A., Serrano, A. E., Demergasso, C. S., & Zárate, R. A. (2016). One-Dimensional TiO2-B Crystals Synthesised by Hydrothermal Process and Their Antibacterial Behaviour on Escherichia coli. Journal of Nanomaterials, 2016, 1-8, 2016. DOI: https://doi.org/10.1155/2016/7213672
  • Li, G., Zhang, Z., Peng, H., & Chen, K. (2013). Mesoporous hydrogenated TiO2 microspheres for high rate capability lithium ion batteries. RSC Adv., 3, 11507–11510. DOI: https://doi.org/10.1039/C3RA41858H
  • Li, L., Chen, Y., Jiao, S., Fang, Z., Liu, X., Xu, Y., Pang, G., & Feng, S. (2016). Synthesis, microstructure, and properties of black anatase and B phase TiO2 nanoparticles. Materials and Design, 100(2016), 235–240. DOI: https://doi.org/10.1016/j.matdes.2016.03.113
  • Liu, N., Schneider, C., Freitag, D., Hartmann, M., Venkatesan, U., Müller, J., Spiecker, E., & Schmuki, P. (2014). Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano Lett., 14(6), 3309–3313. DOI: https://doi.org/10.1021/nl500710j
  • Sinhamahapatra, A., Jong-Pil Jeon J. P., & Yu, J. S. (2015). A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ. Sci., 8(2015), 3539. DOI: https://doi.org/10.1039/C5EE02443A
  • Liu, X., Zhu, G., Wang, X., Yuan, X., Lin, T., & Huang, F. (2016). Progress in Black Titania: A New Material for Advanced Photocatalysis. Adv. Energy Mater., 6(17), 1600452. DOI: https://doi.org/10.1002/aenm.201600452
  • Matsunami, D., Yamanaka, K., Mizoguchi, C., Kojima, K. (2019). Comparison of photodegradation of methylene blue using various TiO2 films and WO3 powders under ultraviolet and visible-light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 369(2019), 106-114. DOI: https://doi.org/10.1016/j.jphotochem.2018.10.020
  • Nikokavoura, A., & Trapalis, C. (2017). Alternative photocatalysts to TiO2 for the photocatalytic reduction of CO2, Applied Surface Science, 391, 149–174. DOI: https://doi.org/10.1016/j.apsusc.2016.06.172
  • Qingli, W., Zhaoguo, Z., Xudong C., Zhengfeng, H., Peimei, D., Yi, C., Xiwen, Z. (2015). Photoreduction of CO2 using black TiO2 films under solar light. Journal of CO2 Utilization, 12(2015), 7-11. DOI: https://doi.org/10.1016/j.jcou.2015.09.001
  • Qiu, J., Li, S., Gray, E., Liu, H., Gu, Q., F., Sun, C., Lai, C., Zhao H., & Zhang, S. (2014). Hydrogenation Synthesis of Blue TiO2 for High-Performance Lithium-Ion Batteries. J. Phys. Chem. C, 118(17), 8824–8830. DOI: https://doi.org/10.1021/jp501819p
  • Ren, R., Wen, Z., Cui, S., Hou, Y., Guo, X., & Chen, J. (2015). Controllable Synthesis and Tunable Photocatalytic Properties of Ti3+-doped TiO2. Scientific Reports, 2015(5), 10714. DOI: https://doi.org/10.1038/srep10714
  • Suprun, W., Lutecki, M., Haber, T., & Papp, H. (2009). Acidic catalysts for the dehydration of glycerol: Activity and deactivation. Journal of Molecular Catalysis A: Chemical, 309(1-2), 71–78.
  • Ullattil, S. G., Narendranath, S. B., Pillai, S. C., & Periyat, P. (2018). Black TiO2 Nanomaterials: A Review of Recent Advances. Chemical Engineering Journal, 343(2018), 708–736. DOI: https://doi.org/10.1016/j.cej.2018.01.069
  • Wang, G., Wang, H., Ling, Y., Tang, Y., Yang, X., Fitzmorris, R. C., Wang, C., Zhang, J. Z., & Li, Y. (2011). Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett., 11, 3026–3033. DOI: https://doi.org/10.1021/nl201766h
  • Yu, X., Kim B., & Kim, Y. K. (2013). Highly Enhanced Photoactivity of Anatase TiO2 Nanocrystals by Controlled Hydrogenation-Induced Surface Defects. ACS Catal.,3(11), 2479–2486. DOI: https://doi.org/10.1021/cs4005776
  • Zhu, Z., Cai, H., & Sun, D. W. (2018). Titanium dioxide (TiO2) photocatalysis technology for nonthermal inactivation of microorganisms in foods. Trends in Food Science & Technology,75(2018), 23–35,. DOI: https://doi.org/10.1016/j.tifs.2018.02.018
Year 2021, Volume: 7 Issue: 1, 71 - 81, 20.03.2021
https://doi.org/10.28979/jarnas.833273

Abstract

Project Number

2017/127

References

  • Ariyanti, D., Mills, L., Dong, J., Yao, Y., & Gao, W. (2017). NaBH4 modified TiO2: Defect site enhancement related to its photocatalytic activity. Materials Chemistry and Physics, 199(2017), 571-576. DOI: https://doi.org/10.1016/j.matchemphys.2017.07.054
  • Chen, S., Zhu, Y., Li, W., Liu, W., Li, L., Yang, Z., Liu, C., Yao, W., Lu, X., & Feng, X. (2010). Synthesis, Features, and Applications of Mesoporous Titania with TiO2 (B), Chin. J. Catal., 31(6), 605–614. DOI: https://doi.org/10.1016/S1872-2067(09)60073-5
  • Chen, X., Liu, L., Yu, P. Y., & Mao, S. S. (2011). Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 331(6018), 746–750. DOI: https://doi.org/10.1126/science.1200448
  • Guo, L. J., Wang, Y. J., & He, T. (2016). Photocatalytic Reduction of CO2 over Heterostructure Semiconductors into Value‐Added Chemicals. The Chemical Record, 16(4), 1918-1933. DOI: https://doi.org/10.1002/tcr.201600008
  • Haider, A., Jameel, Z. N., & Al-Hussaini, I. H. M. (2019). Review on Titanium Dioxide Applications, Energy Procedia. 157(2019), 17-29. DOI: https://doi.org/10.1016/j.egypro.2018.11.159
  • Kerkez-Kuyumcu, Ö., Kibar, E., Dayıoğlu,K., Gedik, F., Akın, A. N., & Özkara-Aydınoğlu, Ş. (2015). A comparative study for removal of different dyes over M/TiO2 (M = Cu, Ni, Co, Fe, Mn and Cr) photocatalysts under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 311(2015), 176–185. DOI: https://doi.org/10.1016/j.jphotochem.2015.05.037
  • León-Ríos, S., González, R. E., Fuentes, S., Ángel, E. C., Echeverría, A., Serrano, A. E., Demergasso, C. S., & Zárate, R. A. (2016). One-Dimensional TiO2-B Crystals Synthesised by Hydrothermal Process and Their Antibacterial Behaviour on Escherichia coli. Journal of Nanomaterials, 2016, 1-8, 2016. DOI: https://doi.org/10.1155/2016/7213672
  • Li, G., Zhang, Z., Peng, H., & Chen, K. (2013). Mesoporous hydrogenated TiO2 microspheres for high rate capability lithium ion batteries. RSC Adv., 3, 11507–11510. DOI: https://doi.org/10.1039/C3RA41858H
  • Li, L., Chen, Y., Jiao, S., Fang, Z., Liu, X., Xu, Y., Pang, G., & Feng, S. (2016). Synthesis, microstructure, and properties of black anatase and B phase TiO2 nanoparticles. Materials and Design, 100(2016), 235–240. DOI: https://doi.org/10.1016/j.matdes.2016.03.113
  • Liu, N., Schneider, C., Freitag, D., Hartmann, M., Venkatesan, U., Müller, J., Spiecker, E., & Schmuki, P. (2014). Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano Lett., 14(6), 3309–3313. DOI: https://doi.org/10.1021/nl500710j
  • Sinhamahapatra, A., Jong-Pil Jeon J. P., & Yu, J. S. (2015). A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ. Sci., 8(2015), 3539. DOI: https://doi.org/10.1039/C5EE02443A
  • Liu, X., Zhu, G., Wang, X., Yuan, X., Lin, T., & Huang, F. (2016). Progress in Black Titania: A New Material for Advanced Photocatalysis. Adv. Energy Mater., 6(17), 1600452. DOI: https://doi.org/10.1002/aenm.201600452
  • Matsunami, D., Yamanaka, K., Mizoguchi, C., Kojima, K. (2019). Comparison of photodegradation of methylene blue using various TiO2 films and WO3 powders under ultraviolet and visible-light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 369(2019), 106-114. DOI: https://doi.org/10.1016/j.jphotochem.2018.10.020
  • Nikokavoura, A., & Trapalis, C. (2017). Alternative photocatalysts to TiO2 for the photocatalytic reduction of CO2, Applied Surface Science, 391, 149–174. DOI: https://doi.org/10.1016/j.apsusc.2016.06.172
  • Qingli, W., Zhaoguo, Z., Xudong C., Zhengfeng, H., Peimei, D., Yi, C., Xiwen, Z. (2015). Photoreduction of CO2 using black TiO2 films under solar light. Journal of CO2 Utilization, 12(2015), 7-11. DOI: https://doi.org/10.1016/j.jcou.2015.09.001
  • Qiu, J., Li, S., Gray, E., Liu, H., Gu, Q., F., Sun, C., Lai, C., Zhao H., & Zhang, S. (2014). Hydrogenation Synthesis of Blue TiO2 for High-Performance Lithium-Ion Batteries. J. Phys. Chem. C, 118(17), 8824–8830. DOI: https://doi.org/10.1021/jp501819p
  • Ren, R., Wen, Z., Cui, S., Hou, Y., Guo, X., & Chen, J. (2015). Controllable Synthesis and Tunable Photocatalytic Properties of Ti3+-doped TiO2. Scientific Reports, 2015(5), 10714. DOI: https://doi.org/10.1038/srep10714
  • Suprun, W., Lutecki, M., Haber, T., & Papp, H. (2009). Acidic catalysts for the dehydration of glycerol: Activity and deactivation. Journal of Molecular Catalysis A: Chemical, 309(1-2), 71–78.
  • Ullattil, S. G., Narendranath, S. B., Pillai, S. C., & Periyat, P. (2018). Black TiO2 Nanomaterials: A Review of Recent Advances. Chemical Engineering Journal, 343(2018), 708–736. DOI: https://doi.org/10.1016/j.cej.2018.01.069
  • Wang, G., Wang, H., Ling, Y., Tang, Y., Yang, X., Fitzmorris, R. C., Wang, C., Zhang, J. Z., & Li, Y. (2011). Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett., 11, 3026–3033. DOI: https://doi.org/10.1021/nl201766h
  • Yu, X., Kim B., & Kim, Y. K. (2013). Highly Enhanced Photoactivity of Anatase TiO2 Nanocrystals by Controlled Hydrogenation-Induced Surface Defects. ACS Catal.,3(11), 2479–2486. DOI: https://doi.org/10.1021/cs4005776
  • Zhu, Z., Cai, H., & Sun, D. W. (2018). Titanium dioxide (TiO2) photocatalysis technology for nonthermal inactivation of microorganisms in foods. Trends in Food Science & Technology,75(2018), 23–35,. DOI: https://doi.org/10.1016/j.tifs.2018.02.018
There are 22 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Murat Efgan Kibar 0000-0002-7968-3099

Project Number 2017/127
Publication Date March 20, 2021
Submission Date November 29, 2020
Published in Issue Year 2021 Volume: 7 Issue: 1

Cite

APA Kibar, M. E. (2021). Preparation of black-titanium dioxide nanotubes by thermal decomposition of sodium borohydride. Journal of Advanced Research in Natural and Applied Sciences, 7(1), 71-81. https://doi.org/10.28979/jarnas.833273
AMA Kibar ME. Preparation of black-titanium dioxide nanotubes by thermal decomposition of sodium borohydride. JARNAS. March 2021;7(1):71-81. doi:10.28979/jarnas.833273
Chicago Kibar, Murat Efgan. “Preparation of Black-Titanium Dioxide Nanotubes by Thermal Decomposition of Sodium Borohydride”. Journal of Advanced Research in Natural and Applied Sciences 7, no. 1 (March 2021): 71-81. https://doi.org/10.28979/jarnas.833273.
EndNote Kibar ME (March 1, 2021) Preparation of black-titanium dioxide nanotubes by thermal decomposition of sodium borohydride. Journal of Advanced Research in Natural and Applied Sciences 7 1 71–81.
IEEE M. E. Kibar, “Preparation of black-titanium dioxide nanotubes by thermal decomposition of sodium borohydride”, JARNAS, vol. 7, no. 1, pp. 71–81, 2021, doi: 10.28979/jarnas.833273.
ISNAD Kibar, Murat Efgan. “Preparation of Black-Titanium Dioxide Nanotubes by Thermal Decomposition of Sodium Borohydride”. Journal of Advanced Research in Natural and Applied Sciences 7/1 (March 2021), 71-81. https://doi.org/10.28979/jarnas.833273.
JAMA Kibar ME. Preparation of black-titanium dioxide nanotubes by thermal decomposition of sodium borohydride. JARNAS. 2021;7:71–81.
MLA Kibar, Murat Efgan. “Preparation of Black-Titanium Dioxide Nanotubes by Thermal Decomposition of Sodium Borohydride”. Journal of Advanced Research in Natural and Applied Sciences, vol. 7, no. 1, 2021, pp. 71-81, doi:10.28979/jarnas.833273.
Vancouver Kibar ME. Preparation of black-titanium dioxide nanotubes by thermal decomposition of sodium borohydride. JARNAS. 2021;7(1):71-8.


TR Dizin 20466




Academindex 30370    

SOBİAD 20460               

Scilit 30371                            

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).