Review
BibTex RIS Cite

Hypoxia and Cancer

Year 2021, Volume: 7 Issue: 3, 450 - 463, 25.09.2021
https://doi.org/10.28979/jarnas.930938

Abstract

A decrease in the required oxygen level in the tissue below the normal value is defined as hypoxia. Hypoxia is a common condition in solid tumors. When tumor cells can not get enough oxygen, they adapt to the hypoxic state by creating genetic differences before going to cell death. Hypoxia has been shown to play a role in developing radio or chemotherapeutic treatment resistance in some tumors. As a result of many clinical studies, it has been demonstrated that the tumor is hypoxic, and the diameter of the tumor increases with a hypoxic state. As a result of the decreased sensitivity of tumor cells to cell death signals and apoptosis, tumor cells can become regionally and systemically aggressive. Also, hypoxia can increase tumor proliferation, angiogenesis, and systemic metastasis signaling. The main protein family responsible for the molecular mechanism of hypoxia in cells is HIF (Hypoxia Inducible Factor). To date, three HIF family members have been identified in response to low oxygen levels in human cells. Named as HIF-1, HIF-2 and HIF-3, each of these heterodimers consists of α subunit and β subunit decomposing under normoxic conditions. Members of the HIF family facilitate both oxygen delivery and adapta-tion to oxygen deprivation by regulating the expression of genes involved in many cellular processes, including glucose uptake and metabolism, erythropoiesis, angiogenesis, cell proliferation, and apoptosis. This review summa-rizes the molecular working mechanism of HIF, the biological functions of hypoxia, and different hypoxia models used in cell culture laboratories.

References

  • Bamberger, E.S. ve Perrett, CW. (2002). Angiogenesis in epithelian ovarian cancer. Journal of Clinical Pathology: Molecular Pathology. 55, 348-359. https://dx.doi.org/10.1136%2Fmp.55.6.348
  • Baysal, S. (2016). NonO/p54nrb Promotorunun Klonlanması ve Fonksiyenel Analizi (Yüksek Lisans Tezi). Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir, Türkiye. Erişim adresi: https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Befani, C. ve Liakos, P. (2018). The role of hypoxia‐inducible factor‐2 alpha in angiogenesis. Journal of Cellular Physiology. 233, 9087–9098. https://doi.org/10.1002/jcp.26805
  • Bracken, C.P., Whitelaw, M.L. ve Peet, D.J. (2003). The hypoxia-inducible factors: Key transcriptional regulators of hypoxic responses. Cellular and Molecular Life Sciences. 60, 1376-93 https://link.springer.com/article/10.1007/s00018-003-2370-y
  • Carmeliet, P. ve Jain, R.K. (2000). Angiogenesis in cancer and other diseases. Nature. 407, 249-57. https://www.nature.com/articles/35025220 Çekin, N. (2007). HIF-1 Proteininin Kanser İlaçlarina Karşi Direnç Gelişmesindeki Rolünün Araştırılması (Yüksek Lisans Tezi). Ankara Üniversitesi Biyoteknoloji Enstitüsü, Ankara, Türkiye. Erişim adresi:https://tez.yok.gov.tr/UlusalTezMerkezi/nilgünçekin
  • Challapalli, A., Carroll, L., Aboagye, E.O. (2017). Molecular mechanisms of hypoxia in cancer. Clinical and Translational Imaging. 5, 225–253. https://doi.org/10.1007/s40336-017-0231-1
  • D’Ignazio, L., Batie ve M., Rocha, S. (2017). Hypoxia and Inflammation in Cancer, Focus on HIF and NF-κB. Biomedicines. 5, 21. https://doi.org/10.3390/biomedicines5020021
  • Demirer, E., Ayten, Ö. ve Taş, D. (2014). Anjiyogenez ve Anti-Anjiyogenik Tedaviler. Journal of Clinical and Analytical Medicine. 5(1), 75-9. https://doi.org/10.4328/JCAM.1310
  • Dengler, V.L., Galbraith, M.D. ve Espinosa, J.M. (2013). Transcriptional regulation by hypoxia inducible factors. Critical Reviews in Biochemistry and Molecular Biology. 49, 1-15. https://doi.org/10.3109/10409238.2013.838205
  • Eales, K.L., Hollinshead K. Ve Tennant, D.A. (2016). Hypoxia and metabolic adaptation of cancer cells. Oncogenesis. 5, 1-8. http://dx.doi.org/10.1038/oncsis.2015.50
  • Folkman, J. (1997). Angiogenesis and angiogenesis inhibition: An overview. In I.D. Goldberg ve E.M. Rosen (Ed.), (pp. 1-8). EXS Regulation of Angiogenesis. 79, 1–7. Erişim adresi: https://link.springer.com/chapter/10.1007/978-3-0348-9006-9_1
  • Folkman, Y. ve Shing, Y. (1992). Angiogenesis. Journal of Biology Chemistry. 267, 10931–10934. https://www.sciencedirect.com/science/ Goldberg, M.P., Monyer, H. Ve Choi, D.W. (1988). Hypoxic neuronal injury in vitro depends on extracellular glutamine. Neuroscience Letters. 94, 52-57. https://doi.org/10.1016/0304-3940(88)90269-8
  • Gu, Y.Z., Moran, S.M., Hogenesch, J.B., Wartman, L., Bradfıeld C.A. (1998). Molecular Characterization and Chromosomal Localization of a Third α-Class Hypoxia Inducible Factor Subunit, HIF3α. Gene Expression. 7(3), 205-213. https://www.ingentaconnect.com/
  • Guo, M., Song, L.P., Jiang, Y., Liu, W., Yu, Y. ve Chen, G.Q. (2006). Hypoxiamimetic agents desferrioxamine and cobalt chloride induce leukemic cell apoptosis through different hypoxia-inducible factor-1α independent mechanisms. Springer Science Business Media. 11, 67–77. https://doi.org/10.1007/s10495-005-3085-3
  • Hatipoglu, O.F., Hirohata, S., Cilek M.Z., Ogawa, H., Miyoshi, T., Obika, M., Demircan, K., Shinohata, R., Kusachi, S. Ve Ninomiya, Y. (2009). ADAMTS1 Is a Unique Hypoxic Early Response Gene Expressed by Endothelial Cells. Journal of Bıologıcal Chemıstry. (284)24, 16325-16333. https://doi.org/10.1074/jbc.M109.001313
  • Illingworth, C.J.R., Loenarz, C., Schofield, C.J. ve Domene, C. (2010). Chemical Basis for the Selectivity of the von Hippel Lindau Tumor Suppressor pVHL for Prolyl-Hydroxylated HIF-1α. Biochemistry. 49, 6936-6944. https://doi.org/10.1021/bi100358t
  • Intaglietta, M., Johnson, PC. ve Winslow, RM. (1996). Microvascular and tissue oxygen distrubution. Cardiovascular Research. 32(4), 632–643. https://doi.org/10.1016/S0008-6363(96)00110-1 Javan, B. ve Shahbazi, M. (2017). Hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation system for cancer gene therapy. ecancermedicalscience. 11, 751. doi: 10.3332/ecancer.2017.751
  • Jozsef Jaszai, J. ve Schmidt, M.H.H. (2019). Trends and Challenges in Tumor Anti-Angiogenic Therapies. Cells. 8, 1102. https://doi.org/10.3390/cells8091102 Konukoğlu, D. ve Turhan, M.S. (2005). Anjiyogenezin Temel Moleküler Mekanizmaları ve Tümör Anjiyogenezi. Cerrahpaşa Journal Medicine. 36, 42-48. https://www.academia.edu/
  • Lando, D., Peet, D.J., Gorman, J.J., Whelan, D.A., Whitelaw, M.L. ve Bruick R.K. (2002). FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes and Development. 16, 1466–1471. http://doi.org/10.1101/gad.991402
  • Lee, J.W., Bae, S.H., Jeong, J.W., Kim, S.H. ve Kim, K.W. (2004). Hypoxia-inducible factor (HIF-1)α: its protein stability and biological functions. Experimental and Molecular Medıcıne. 36, 1-12. https://doi.org/10.1038/emm.2004.1
  • Liu, L. ve Simon, M.C. (2004). Regulation of Transcription and Translation by Hypoxia. Cancer Biology and Therapy. 3(6), 492-497. https://doi.org/10.4161/cbt.3.6.1010
  • Lommarini, L., Porcelli, A.M.,Gasparre, G. ve Kurelac, I. (2017). Non-Canonical Mechanisms Regulating Hypoxia-Inducible Factor 1 Alpha in Cancer. Frontiers in Oncology. 7, 286. https://doi.org/10.3389/fonc.2017.00286
  • Lugano, R., Ramachandran, M. ve Dimberg, A. (2019). Tumor angiogenesis: causes, consequences, challenges and opportunities. Cellular and Molecular Life Sciences. 77, 1745–1770. https://doi.org/10.1007/s00018-019-03351-7
  • Lv, X., Li, J., Zhang, C., Hu, T., Li, S., He, S., Yan, H., Tan, Y., Lei, M., Wen, M. ve Zuo, J. (2017). The role of hypoxia-inducible factors in tumor angiogenesis and cell metabolism. Genea and Diseases. 4, 19-24. https://doi.org/10.1016/j.gendis.2016.11.003
  • Makino, Y., Cao, R., Svensson, K., Bertilsson G., Asman, M., Tanaka, H., Cao, Y., Berkenstam, A. ve Poellinger, L. (2001). Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature. 414, 550–554. https://www.nature.com/articles/35107085
  • Martin, S.K., Diamond, P., Gronthos, S., Peet, D.J. ve Zannettino, A.C.W. (2011). The emerging role of hypoxia, HIF-1 and HIF-2 in multiple myeloma. Leukemia. 25, 1533–1542. http://dx.doi.org/10.1038/leu.2011.122
  • Maxwell, P.H., Pugh, C.W. ve Ratcliffe, P.J. (2001). Activation of the HIF pathway in cancer. Current Opinion in Genetics Development. 11, 293-9. 36. https://doi.org/10.1016/S0959-437X(00)00193-3
  • Maxwell, P.H., Wiesener M.S., Chang, G.V., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher E.R. ve Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 399, 271–275. https://www.nature.com/articles/20459
  • Mungai, P.T., Waypa, G.B., Jairaman, A., Prakriya, M., Dokic, D., Ball, MK., Schumacker, PT. (2011). Hypoxia triggers AMPK activation through reactive oxygen species‐mediated activation of calcium release‐ activated calcium channels. Molecular and Cellular Biology. 31(17), 3531–3545. https://doi.org/10.1128/MCB.05124-11
  • Okuyan, D.,Turkoglu, SA. ve Kockar F. (2020). Carbonic anhydrase III is a new target of HIF1α in prostate cancer model. Gene. 762, 145034. https://doi.org/10.1016/j.gene.2020.145034
  • Ölgen, S., Bıçak, I. Ve Nebioğlu, D. (2002). Angiogenesis ve Kanser Tedavisinde Yeni Yaklaşımlar. Ankara Eczacılık Fakültesi Dergisi. 31(3), 193-214. https://pdfs.semanticscholar.org/
  • Rankin, E.B. ve Giaccia, A.J. (2008). The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 15(4), 678–685. https://www.nature.com/articles/cdd200821
  • Redmer, DA., Doraiswamy, V., Bortnem, B.J., Fisher, K., Jablonka-Shariff, A., Grazul-Bilska, A.T. ve Reynolds, L.P. (2001). Evidence for a Role of Capillary Pericytes in Vascular Growth of the Developing Ovine Corpus Luteum. Bıology of Reproductıon. 65, 879-889. https://doi.org/10.1095/biolreprod65.3.879
  • Risau, W. (1997). Mechanisms of angiogenesis. Nature. 386, 671-674. https://www.nature.com/articles/386671a0 Rundhaug, J.E. (2005). Matrix metalloproteinases and angiogenesis. Journal of Cellular and Molecular Medicine. 9, 267-285. https://doi.org/10.1111/j.1582-4934.2005.tb00355.x
  • Sanchez, J.M. ve Cardenas, M.E.C. (2018). The use of cobalt chloride as a chemical hypoxia model. Journol of Applied Toxicology. 39, 556–570. https://doi.org/10.1002/jat.3749
  • Schito, L. (2018). Bridging angiogenesis and immune evasion in the hypoxic tumor microenvironment. The American Physiological Society. 315, R1072–R1084. https://doi.org/10.1152/ajpregu.00209.2018
  • Selvendiran, K., Bratasz, A., Kuppusamy, M.L., Tazi, M.F., Rivera, B.K. ve Kuppusamy P. (2009). Hypoxia induces chemoresistance in ovarian cancer cells by activation of signal transducer and activator of transcription 3. International Journal of Cancer. 125(9), 2198–2204. https://doi.org/10.1002/ijc.24601
  • Semenza, G.L. (1998): Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Current Opinion in Genetics & Development. 8(5), 588-594. https://doi.org/10.1016/S0959-437X(98)80016-6
  • Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews Cancer. 3, 721-32. https://www.nature.com/articles/nrc1187
  • Semenza, G.L., Nejfelt, M.K., Chi, S.M. ve Antonarakis, S.E. (1991). Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proceedings of the Natıonal Academy of Sciences of the United States of America. 88(13), 5680-5684. https://doi.org/10.1073/pnas.88.13.5680
  • Sevimli, T., Özçelik, N. ve Sevimli, M. (2015). Tümör anjiyogenezinde mikroRNA (miRNA)’ ların rolü. SDÜ Sağlık Bilimleri Dergisi. 6, 1. http://eds.b.ebscohost.com/eds/pdfviewer/
  • Talks, K.L., Turley, H., Gatter, K.C., Maxwell, P.H., Pugh, C.W., Ratcliffe, P.J. ve Adrian, L.H. (2000). The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages. The American Journal of Pathology. 157, 411-21. https://doi.org/10.1016/S0002-9440(10)64554-3
  • Tameemi, W.A., Dale, T.P., Jumailyand R.M. ve Forsyth N.R. (2019). Hypoxia-Modified Cancer Cell Metabolism. Frontiers in Cell and Developmental Biology. 7, 4. https://doi.org/10.3389/fcell.2019.00004
  • Tang, N., Wang, L., Esko, J., Giordano, F.J., Huang, Y., Gerber, H.P., Ferrara, N. ve Johnson, R.S. (2004). Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell. 6(5), 485e495. https://doi.org/10.1016/j.ccr.2004.09.026
  • Tepebaşı, M.Y., Calaboğlu, N.Ş. (2016). Hipoksi i̇le i̇ndüklenen faktör-1 alfa (HIF-1α) C111A gen polimorfizmi i̇le hemoglobin konsantrasyonu arasındaki i̇lişkinin araştırılması. Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi. 23(2), 53-59. https://dergipark.org.tr/en/pub/sdutfd/issue/26473/278673
  • Torres, J.F., Navaa, G.A.M., Ruiz M.C.G., Quiroz, L.E.G. ve Gutierrez, M. (2017). Role of HIF-1α signaling pathway in osteoarthritis: a systematic review. Revista Brasileira de Reumatologıa. 57(2), 162-173. https://doi.org/10.1016/j.rbre.2016.07.008
  • Turkoglu, S.A. ve Kockar F. (2012). Expression Of Gapdh, Β-Actin And Β-2-Microglobulin Genes Under Chemically Induced Hypoxic Conditions In Hep3b And Pc3 Cells. Journal of Applied Biological Sciences. 6(3), 1-6. http://www.jabsonline.org/index.php/jabs/article/view/306
  • Turkoglu, S.A. ve Kockar F. (2016). SP1 and USF differentially regulate ADAMTS1 gene expression under normoxic and hypoxic conditions in hepatoma cells. Gene. 575, 48-57. https://doi.org/10.1016/j.gene.2015.08.035
  • Wang, GL., Jıang, B.H., Rue, E.A. ve Semenza, G.L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular 02 tension. Proceedings of the National Academiy Sciences, 92, 5510-5514. https://doi.org/10.1073/pnas.92.12.5510
  • Wang, R., Jin, F. ve Zhong, H. (2014). A novel experimental hypoxia chamber for cell culture. American Journal of Cancer Research. 4(1), 53-60. https://www.ncbi.nlm.nih.gov/
  • Woo, K.J., Lee, T.J., Park, J.W. ve Kwon, T.K. (2006). Desferrioxamine, an iron chelator, enhances HIF-1α accumulation via cyclooxygenase-2 signaling pathway. Biochemical and Biophysical Research Communications. 343, 8–14. https://doi.org/10.1016/j.bbrc.2006.02.116
  • Wu, D. ve Yotnda, P. (2011). Induction and Testing of Hypoxia in Cell Culture. Journal of Visualized Experiments. 54: e2899. https://dx.doi.org/10.3791/2899 Yeo, E.J. (2019). Hypoxia and aging. Experimental & Molecular Medicine. 51, 1-15. https://doi.org/10.1038/s12276-019-0233-3
  • Yu, T., Tang, B. ve Sun, X. (2017). Development of Inhibitors Targeting Hypoxia-Inducible Factor 1 and 2 for Cancer Therapy. Yonsei Medical Journal. 58(3), 489-496. https://doi.org/10.3349/ymj.2017.58.3.489
  • Yuan, Y., Hilliard, G., Ferguson, T. ve Millhorn, D.E. (2003). Cobalt Inhibits the Interaction between Hypoxia-inducible Factor- and von Hippel-Lindau 112 Protein by Direct Binding to Hypoxia-inducible Factor-α. The Journal of Biological Chemistry. 278(18), 15911–15916. https://doi.org/10.1074/jbc.M300463200

Hipoksi ve Kanser

Year 2021, Volume: 7 Issue: 3, 450 - 463, 25.09.2021
https://doi.org/10.28979/jarnas.930938

Abstract

Dokudaki gerekli oksijen seviyesinin normal değerin altına düşmesi hipoksi olarak tanımlanır. Hipoksi katı tümör-lerde sık karşılaşılan bir durumdur. Tümör hücreleri yeterli oksijen alamadığında hücre ölümüne gitmeden önce genetik farklılıklar oluşturarak hipoksik duruma adapte olmaktadır. Bazı tümörlerde radyo veya kemoterapötik tedavi direncinin gelişiminde hipoksinin rol oynadığı gösterilmiştir. Birçok klinik çalışma sonucunda tümörün hipoksik olduğu ve hipoksik durumun yükselmesiyle de tümör çapının arttığı gösterilmiştir. Hipoksik hale gelen tümör hücrelerinin, hücre ölüm sinyallerine ve apoptoza karşı duyarlılığının azalması sonucu bölgesel ve sistemik olarak agresif olabilmektedir. Ayrıca hipoksi; tümör proliferasyonu, anjiyogenez ve sistemik metastaz sinyalizasy-onunu arttırabilmektedir. Hücrelerdeki hipoksinin moleküler mekanizmasından sorumlu temel protein ailesi HIF (Hipoksi ile İndükelenebilir Faktör)’ dir. Bugüne kadar, insan hücrelerinde düşük oksijen seviyelerine yanıt olarak üç HIF protein ailesi üyesi tespit edilmiştir. HIF-1, HIF-2 ve HIF-3 olarak isimlendirilen bu heterodimerlerin her birisi, normoksik koşullarda ayrışan α alt birim ve β alt birimden oluşan proteinlerdir. HIF ailesi üyeleri glikoz alımı ve metabolizması, eritropoez, anjiyogenez, hücre proliferasyonu ve apoptoz dahil olmak üzere birçok hücresel süreçte yer alan genlerin ifadesini düzenleyerek hem oksijen dağıtımını hem de oksijen yoksunluğuna adaptasyonu kolaylaştırırlar. Bu derleme, HIF’ in moleküler çalışma mekanizmasını, hipoksinin biyolojik fonksiyonlarını ve hücre kültürü laboratuarlarında kullanılan farklı hipoksi modellerini özetlemektedir.

References

  • Bamberger, E.S. ve Perrett, CW. (2002). Angiogenesis in epithelian ovarian cancer. Journal of Clinical Pathology: Molecular Pathology. 55, 348-359. https://dx.doi.org/10.1136%2Fmp.55.6.348
  • Baysal, S. (2016). NonO/p54nrb Promotorunun Klonlanması ve Fonksiyenel Analizi (Yüksek Lisans Tezi). Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir, Türkiye. Erişim adresi: https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Befani, C. ve Liakos, P. (2018). The role of hypoxia‐inducible factor‐2 alpha in angiogenesis. Journal of Cellular Physiology. 233, 9087–9098. https://doi.org/10.1002/jcp.26805
  • Bracken, C.P., Whitelaw, M.L. ve Peet, D.J. (2003). The hypoxia-inducible factors: Key transcriptional regulators of hypoxic responses. Cellular and Molecular Life Sciences. 60, 1376-93 https://link.springer.com/article/10.1007/s00018-003-2370-y
  • Carmeliet, P. ve Jain, R.K. (2000). Angiogenesis in cancer and other diseases. Nature. 407, 249-57. https://www.nature.com/articles/35025220 Çekin, N. (2007). HIF-1 Proteininin Kanser İlaçlarina Karşi Direnç Gelişmesindeki Rolünün Araştırılması (Yüksek Lisans Tezi). Ankara Üniversitesi Biyoteknoloji Enstitüsü, Ankara, Türkiye. Erişim adresi:https://tez.yok.gov.tr/UlusalTezMerkezi/nilgünçekin
  • Challapalli, A., Carroll, L., Aboagye, E.O. (2017). Molecular mechanisms of hypoxia in cancer. Clinical and Translational Imaging. 5, 225–253. https://doi.org/10.1007/s40336-017-0231-1
  • D’Ignazio, L., Batie ve M., Rocha, S. (2017). Hypoxia and Inflammation in Cancer, Focus on HIF and NF-κB. Biomedicines. 5, 21. https://doi.org/10.3390/biomedicines5020021
  • Demirer, E., Ayten, Ö. ve Taş, D. (2014). Anjiyogenez ve Anti-Anjiyogenik Tedaviler. Journal of Clinical and Analytical Medicine. 5(1), 75-9. https://doi.org/10.4328/JCAM.1310
  • Dengler, V.L., Galbraith, M.D. ve Espinosa, J.M. (2013). Transcriptional regulation by hypoxia inducible factors. Critical Reviews in Biochemistry and Molecular Biology. 49, 1-15. https://doi.org/10.3109/10409238.2013.838205
  • Eales, K.L., Hollinshead K. Ve Tennant, D.A. (2016). Hypoxia and metabolic adaptation of cancer cells. Oncogenesis. 5, 1-8. http://dx.doi.org/10.1038/oncsis.2015.50
  • Folkman, J. (1997). Angiogenesis and angiogenesis inhibition: An overview. In I.D. Goldberg ve E.M. Rosen (Ed.), (pp. 1-8). EXS Regulation of Angiogenesis. 79, 1–7. Erişim adresi: https://link.springer.com/chapter/10.1007/978-3-0348-9006-9_1
  • Folkman, Y. ve Shing, Y. (1992). Angiogenesis. Journal of Biology Chemistry. 267, 10931–10934. https://www.sciencedirect.com/science/ Goldberg, M.P., Monyer, H. Ve Choi, D.W. (1988). Hypoxic neuronal injury in vitro depends on extracellular glutamine. Neuroscience Letters. 94, 52-57. https://doi.org/10.1016/0304-3940(88)90269-8
  • Gu, Y.Z., Moran, S.M., Hogenesch, J.B., Wartman, L., Bradfıeld C.A. (1998). Molecular Characterization and Chromosomal Localization of a Third α-Class Hypoxia Inducible Factor Subunit, HIF3α. Gene Expression. 7(3), 205-213. https://www.ingentaconnect.com/
  • Guo, M., Song, L.P., Jiang, Y., Liu, W., Yu, Y. ve Chen, G.Q. (2006). Hypoxiamimetic agents desferrioxamine and cobalt chloride induce leukemic cell apoptosis through different hypoxia-inducible factor-1α independent mechanisms. Springer Science Business Media. 11, 67–77. https://doi.org/10.1007/s10495-005-3085-3
  • Hatipoglu, O.F., Hirohata, S., Cilek M.Z., Ogawa, H., Miyoshi, T., Obika, M., Demircan, K., Shinohata, R., Kusachi, S. Ve Ninomiya, Y. (2009). ADAMTS1 Is a Unique Hypoxic Early Response Gene Expressed by Endothelial Cells. Journal of Bıologıcal Chemıstry. (284)24, 16325-16333. https://doi.org/10.1074/jbc.M109.001313
  • Illingworth, C.J.R., Loenarz, C., Schofield, C.J. ve Domene, C. (2010). Chemical Basis for the Selectivity of the von Hippel Lindau Tumor Suppressor pVHL for Prolyl-Hydroxylated HIF-1α. Biochemistry. 49, 6936-6944. https://doi.org/10.1021/bi100358t
  • Intaglietta, M., Johnson, PC. ve Winslow, RM. (1996). Microvascular and tissue oxygen distrubution. Cardiovascular Research. 32(4), 632–643. https://doi.org/10.1016/S0008-6363(96)00110-1 Javan, B. ve Shahbazi, M. (2017). Hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation system for cancer gene therapy. ecancermedicalscience. 11, 751. doi: 10.3332/ecancer.2017.751
  • Jozsef Jaszai, J. ve Schmidt, M.H.H. (2019). Trends and Challenges in Tumor Anti-Angiogenic Therapies. Cells. 8, 1102. https://doi.org/10.3390/cells8091102 Konukoğlu, D. ve Turhan, M.S. (2005). Anjiyogenezin Temel Moleküler Mekanizmaları ve Tümör Anjiyogenezi. Cerrahpaşa Journal Medicine. 36, 42-48. https://www.academia.edu/
  • Lando, D., Peet, D.J., Gorman, J.J., Whelan, D.A., Whitelaw, M.L. ve Bruick R.K. (2002). FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes and Development. 16, 1466–1471. http://doi.org/10.1101/gad.991402
  • Lee, J.W., Bae, S.H., Jeong, J.W., Kim, S.H. ve Kim, K.W. (2004). Hypoxia-inducible factor (HIF-1)α: its protein stability and biological functions. Experimental and Molecular Medıcıne. 36, 1-12. https://doi.org/10.1038/emm.2004.1
  • Liu, L. ve Simon, M.C. (2004). Regulation of Transcription and Translation by Hypoxia. Cancer Biology and Therapy. 3(6), 492-497. https://doi.org/10.4161/cbt.3.6.1010
  • Lommarini, L., Porcelli, A.M.,Gasparre, G. ve Kurelac, I. (2017). Non-Canonical Mechanisms Regulating Hypoxia-Inducible Factor 1 Alpha in Cancer. Frontiers in Oncology. 7, 286. https://doi.org/10.3389/fonc.2017.00286
  • Lugano, R., Ramachandran, M. ve Dimberg, A. (2019). Tumor angiogenesis: causes, consequences, challenges and opportunities. Cellular and Molecular Life Sciences. 77, 1745–1770. https://doi.org/10.1007/s00018-019-03351-7
  • Lv, X., Li, J., Zhang, C., Hu, T., Li, S., He, S., Yan, H., Tan, Y., Lei, M., Wen, M. ve Zuo, J. (2017). The role of hypoxia-inducible factors in tumor angiogenesis and cell metabolism. Genea and Diseases. 4, 19-24. https://doi.org/10.1016/j.gendis.2016.11.003
  • Makino, Y., Cao, R., Svensson, K., Bertilsson G., Asman, M., Tanaka, H., Cao, Y., Berkenstam, A. ve Poellinger, L. (2001). Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature. 414, 550–554. https://www.nature.com/articles/35107085
  • Martin, S.K., Diamond, P., Gronthos, S., Peet, D.J. ve Zannettino, A.C.W. (2011). The emerging role of hypoxia, HIF-1 and HIF-2 in multiple myeloma. Leukemia. 25, 1533–1542. http://dx.doi.org/10.1038/leu.2011.122
  • Maxwell, P.H., Pugh, C.W. ve Ratcliffe, P.J. (2001). Activation of the HIF pathway in cancer. Current Opinion in Genetics Development. 11, 293-9. 36. https://doi.org/10.1016/S0959-437X(00)00193-3
  • Maxwell, P.H., Wiesener M.S., Chang, G.V., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher E.R. ve Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 399, 271–275. https://www.nature.com/articles/20459
  • Mungai, P.T., Waypa, G.B., Jairaman, A., Prakriya, M., Dokic, D., Ball, MK., Schumacker, PT. (2011). Hypoxia triggers AMPK activation through reactive oxygen species‐mediated activation of calcium release‐ activated calcium channels. Molecular and Cellular Biology. 31(17), 3531–3545. https://doi.org/10.1128/MCB.05124-11
  • Okuyan, D.,Turkoglu, SA. ve Kockar F. (2020). Carbonic anhydrase III is a new target of HIF1α in prostate cancer model. Gene. 762, 145034. https://doi.org/10.1016/j.gene.2020.145034
  • Ölgen, S., Bıçak, I. Ve Nebioğlu, D. (2002). Angiogenesis ve Kanser Tedavisinde Yeni Yaklaşımlar. Ankara Eczacılık Fakültesi Dergisi. 31(3), 193-214. https://pdfs.semanticscholar.org/
  • Rankin, E.B. ve Giaccia, A.J. (2008). The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 15(4), 678–685. https://www.nature.com/articles/cdd200821
  • Redmer, DA., Doraiswamy, V., Bortnem, B.J., Fisher, K., Jablonka-Shariff, A., Grazul-Bilska, A.T. ve Reynolds, L.P. (2001). Evidence for a Role of Capillary Pericytes in Vascular Growth of the Developing Ovine Corpus Luteum. Bıology of Reproductıon. 65, 879-889. https://doi.org/10.1095/biolreprod65.3.879
  • Risau, W. (1997). Mechanisms of angiogenesis. Nature. 386, 671-674. https://www.nature.com/articles/386671a0 Rundhaug, J.E. (2005). Matrix metalloproteinases and angiogenesis. Journal of Cellular and Molecular Medicine. 9, 267-285. https://doi.org/10.1111/j.1582-4934.2005.tb00355.x
  • Sanchez, J.M. ve Cardenas, M.E.C. (2018). The use of cobalt chloride as a chemical hypoxia model. Journol of Applied Toxicology. 39, 556–570. https://doi.org/10.1002/jat.3749
  • Schito, L. (2018). Bridging angiogenesis and immune evasion in the hypoxic tumor microenvironment. The American Physiological Society. 315, R1072–R1084. https://doi.org/10.1152/ajpregu.00209.2018
  • Selvendiran, K., Bratasz, A., Kuppusamy, M.L., Tazi, M.F., Rivera, B.K. ve Kuppusamy P. (2009). Hypoxia induces chemoresistance in ovarian cancer cells by activation of signal transducer and activator of transcription 3. International Journal of Cancer. 125(9), 2198–2204. https://doi.org/10.1002/ijc.24601
  • Semenza, G.L. (1998): Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Current Opinion in Genetics & Development. 8(5), 588-594. https://doi.org/10.1016/S0959-437X(98)80016-6
  • Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews Cancer. 3, 721-32. https://www.nature.com/articles/nrc1187
  • Semenza, G.L., Nejfelt, M.K., Chi, S.M. ve Antonarakis, S.E. (1991). Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proceedings of the Natıonal Academy of Sciences of the United States of America. 88(13), 5680-5684. https://doi.org/10.1073/pnas.88.13.5680
  • Sevimli, T., Özçelik, N. ve Sevimli, M. (2015). Tümör anjiyogenezinde mikroRNA (miRNA)’ ların rolü. SDÜ Sağlık Bilimleri Dergisi. 6, 1. http://eds.b.ebscohost.com/eds/pdfviewer/
  • Talks, K.L., Turley, H., Gatter, K.C., Maxwell, P.H., Pugh, C.W., Ratcliffe, P.J. ve Adrian, L.H. (2000). The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages. The American Journal of Pathology. 157, 411-21. https://doi.org/10.1016/S0002-9440(10)64554-3
  • Tameemi, W.A., Dale, T.P., Jumailyand R.M. ve Forsyth N.R. (2019). Hypoxia-Modified Cancer Cell Metabolism. Frontiers in Cell and Developmental Biology. 7, 4. https://doi.org/10.3389/fcell.2019.00004
  • Tang, N., Wang, L., Esko, J., Giordano, F.J., Huang, Y., Gerber, H.P., Ferrara, N. ve Johnson, R.S. (2004). Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell. 6(5), 485e495. https://doi.org/10.1016/j.ccr.2004.09.026
  • Tepebaşı, M.Y., Calaboğlu, N.Ş. (2016). Hipoksi i̇le i̇ndüklenen faktör-1 alfa (HIF-1α) C111A gen polimorfizmi i̇le hemoglobin konsantrasyonu arasındaki i̇lişkinin araştırılması. Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi. 23(2), 53-59. https://dergipark.org.tr/en/pub/sdutfd/issue/26473/278673
  • Torres, J.F., Navaa, G.A.M., Ruiz M.C.G., Quiroz, L.E.G. ve Gutierrez, M. (2017). Role of HIF-1α signaling pathway in osteoarthritis: a systematic review. Revista Brasileira de Reumatologıa. 57(2), 162-173. https://doi.org/10.1016/j.rbre.2016.07.008
  • Turkoglu, S.A. ve Kockar F. (2012). Expression Of Gapdh, Β-Actin And Β-2-Microglobulin Genes Under Chemically Induced Hypoxic Conditions In Hep3b And Pc3 Cells. Journal of Applied Biological Sciences. 6(3), 1-6. http://www.jabsonline.org/index.php/jabs/article/view/306
  • Turkoglu, S.A. ve Kockar F. (2016). SP1 and USF differentially regulate ADAMTS1 gene expression under normoxic and hypoxic conditions in hepatoma cells. Gene. 575, 48-57. https://doi.org/10.1016/j.gene.2015.08.035
  • Wang, GL., Jıang, B.H., Rue, E.A. ve Semenza, G.L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular 02 tension. Proceedings of the National Academiy Sciences, 92, 5510-5514. https://doi.org/10.1073/pnas.92.12.5510
  • Wang, R., Jin, F. ve Zhong, H. (2014). A novel experimental hypoxia chamber for cell culture. American Journal of Cancer Research. 4(1), 53-60. https://www.ncbi.nlm.nih.gov/
  • Woo, K.J., Lee, T.J., Park, J.W. ve Kwon, T.K. (2006). Desferrioxamine, an iron chelator, enhances HIF-1α accumulation via cyclooxygenase-2 signaling pathway. Biochemical and Biophysical Research Communications. 343, 8–14. https://doi.org/10.1016/j.bbrc.2006.02.116
  • Wu, D. ve Yotnda, P. (2011). Induction and Testing of Hypoxia in Cell Culture. Journal of Visualized Experiments. 54: e2899. https://dx.doi.org/10.3791/2899 Yeo, E.J. (2019). Hypoxia and aging. Experimental & Molecular Medicine. 51, 1-15. https://doi.org/10.1038/s12276-019-0233-3
  • Yu, T., Tang, B. ve Sun, X. (2017). Development of Inhibitors Targeting Hypoxia-Inducible Factor 1 and 2 for Cancer Therapy. Yonsei Medical Journal. 58(3), 489-496. https://doi.org/10.3349/ymj.2017.58.3.489
  • Yuan, Y., Hilliard, G., Ferguson, T. ve Millhorn, D.E. (2003). Cobalt Inhibits the Interaction between Hypoxia-inducible Factor- and von Hippel-Lindau 112 Protein by Direct Binding to Hypoxia-inducible Factor-α. The Journal of Biological Chemistry. 278(18), 15911–15916. https://doi.org/10.1074/jbc.M300463200
There are 54 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Sümeyye Aydogan Türkoğlu 0000-0003-1754-0700

Fatma Poyrazlı This is me 0000-0001-8069-6447

Derya Babacan 0000-0001-6758-8556

Feray Köçkar 0000-0003-2572-8391

Publication Date September 25, 2021
Submission Date May 2, 2021
Published in Issue Year 2021 Volume: 7 Issue: 3

Cite

APA Aydogan Türkoğlu, S., Poyrazlı, F., Babacan, D., Köçkar, F. (2021). Hipoksi ve Kanser. Journal of Advanced Research in Natural and Applied Sciences, 7(3), 450-463. https://doi.org/10.28979/jarnas.930938
AMA Aydogan Türkoğlu S, Poyrazlı F, Babacan D, Köçkar F. Hipoksi ve Kanser. JARNAS. September 2021;7(3):450-463. doi:10.28979/jarnas.930938
Chicago Aydogan Türkoğlu, Sümeyye, Fatma Poyrazlı, Derya Babacan, and Feray Köçkar. “Hipoksi Ve Kanser”. Journal of Advanced Research in Natural and Applied Sciences 7, no. 3 (September 2021): 450-63. https://doi.org/10.28979/jarnas.930938.
EndNote Aydogan Türkoğlu S, Poyrazlı F, Babacan D, Köçkar F (September 1, 2021) Hipoksi ve Kanser. Journal of Advanced Research in Natural and Applied Sciences 7 3 450–463.
IEEE S. Aydogan Türkoğlu, F. Poyrazlı, D. Babacan, and F. Köçkar, “Hipoksi ve Kanser”, JARNAS, vol. 7, no. 3, pp. 450–463, 2021, doi: 10.28979/jarnas.930938.
ISNAD Aydogan Türkoğlu, Sümeyye et al. “Hipoksi Ve Kanser”. Journal of Advanced Research in Natural and Applied Sciences 7/3 (September 2021), 450-463. https://doi.org/10.28979/jarnas.930938.
JAMA Aydogan Türkoğlu S, Poyrazlı F, Babacan D, Köçkar F. Hipoksi ve Kanser. JARNAS. 2021;7:450–463.
MLA Aydogan Türkoğlu, Sümeyye et al. “Hipoksi Ve Kanser”. Journal of Advanced Research in Natural and Applied Sciences, vol. 7, no. 3, 2021, pp. 450-63, doi:10.28979/jarnas.930938.
Vancouver Aydogan Türkoğlu S, Poyrazlı F, Babacan D, Köçkar F. Hipoksi ve Kanser. JARNAS. 2021;7(3):450-63.


TR Dizin 20466




Academindex 30370    

SOBİAD 20460               

Scilit 30371                            

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).