Research Article
BibTex RIS Cite

Yedi Akdeniz Lamiaceae Türünün Duman ve Duman Kökenli Bileşiklere Olan Çimlenme Tepkisi

Year 2021, Volume: 7 Issue: 4, 478 - 485, 15.12.2021
https://doi.org/10.28979/jarnas.936432

Abstract

− Bitki kökenli dumanın, Akdeniz tipi ekosistemlerde yetişen birçok Lamiaceae türünün çimlenmesini tetiklediği gösterilmiştir. Bununla birlikte, Lamiaceae türlerinin karrikinolid (KAR1) ve siyanohidrin gibi duman kökenli bileşik-lere olan çimlenme tepkileri hakkında çok az şey bilinmektedir. Bu nedenle, bu çalışmada, duman bileşiklerin yedi Akdeniz Lamiaceae türünde (Ballota acetabulosa, Lavandula stoechas subsp. stoechas, Origanum onites, Phlomis bourgaei, P. lycia, Stachys cretica subsp. smyrnaea ve Teucrium chamaedrys) tohum çimlenmesi üzerindeki etkile-rini belirlemeyi amaçladık. Bu hedefe ulaşmak için çalışma türlerinin tohumları farklı konsantrasyonlarda duman-suyu, KAR1, mandelonitril (MAN) ve KAR1 + MAN’a maruz bırakılmıştır. Uygulama gruplarına ait tohumlar daha sonra karanlık koşullarda 20 °C'de inkübe edilmiş ve 35 gün boyunca haftada iki kez çimlenme sayımları yapıl-mıştır. Sonuçlarımız, dumanın kontrol koşullarına göre B. acetabulosa, P. lycia ve S. cretica'nın çimlenme yüzde-lerinde önemli bir artışa yol açtığını göstermektedir. KAR1, B. acetabulosa ve S. cretica'nın çimlenmesini uyarırken, MAN uygulamaları Lamiaceae türlerinin çimlenmesini teşvik etmemiştir. KAR1 ve MAN kombinasyonu dumana duyarlı üç türün çimlenmesini tetiklemekle kalmamış, aynı zamanda T. chamaedrys'in çimlenme yüzdesini de önemli ölçüde arttırmıştır. Sonuç olarak, çalışmamız, dumanın Lamiaceae türlerinin çimlenmesi üzerinde olumlu bir etkiye sahip olduğu fikrini desteklemekte ve KAR1 ve siyanohidrinin birlikte uygulanmasının, tohum çimlenme-sinin uyarılmasında, bu iki bileşiğin ayrı ayrı uygulanmasına göre daha etkili olduğuna dair kanıtlar sağlamaktadır

Supporting Institution

Muğla Sıtkı Koçman Üniversitesi Öğretim Üyesi Yetiştirme Programı (ÖYP) Koordinatörlüğü

References

  • Adkins, S. W. ve Peters, N. C. B. (2001). Smoke derived from burnt vegetation stimulates germination of arable weeds. Seed Science Research, 11(3), 213–222. https://doi.org/10.1079/SSR200177
  • Arcamone, J. R. ve Jaureguiberry, P. (2018). Germination response of common annual and perennial forbs to heat shock and smoke treatments in the Chaco Serrano, central Argentina. Austral Ecology, 43(5), 567–577. https://doi.org/10.1111/aec.12593
  • Baldos, O. C., DeFrank, J. ve Sakamoto, G. S. (2015). Germination response of dormant tanglehead (Heteropogon contortus) seeds to smoke-infused water and the smoke-associated stimulatory compounds, karrikinolide and cyanide. HortScience, 50(3), 421–429. https://doi.org/10.21273/HORTSCI.50.3.421
  • Baldwin, I. T., Staszak-Kozinski, L. ve Davidson, R. (1994). Up in smoke: I. Smoke-derived germination cues for postfire annual, Nicotiana attenuata torr. Ex. Watson. Journal of Chemical Ecology, 20(9), 2345–2371. https://doi.org/10.1007/BF02033207
  • Burger, B. V., Pošta, M., Light, M. E., Kulkarni, M. G., Viviers, M. Z. ve Van Staden, J. (2018). More butenolides from plant-derived smoke with germination inhibitory activity against karrikinolide. South African Journal of Botany, 115, 256–263. https://doi.org/10.1016/j.sajb.2018.01.023
  • Chuvieco, E., Giglio, L. ve Justice, C. (2008). Global characterization of fire activity: Toward defining fire regimes from Earth observation data. Global Change Biology, 14(7), 1488–1502. https://doi.org/10.1111/j.1365-2486.2008.01585.x
  • Çatav, S. S., Küçükakyüz, K., Akbaş, K. ve Tavşanoğlu, Ç. (2014). Smoke-enhanced seed germination in Mediterranean Lamiaceae. Seed Science Research, 24(3), 257–264. https://doi.org/10.1017/S0960258514000142
  • Çatav, Ş. S., Küçükakyüz, K., Tavşanoğlu, Ç. ve Akbaş, K. (2015). Effects of aqueous smoke and nitrate treatments on germination of 12 eastern Mediterranean Basin plants. Annales Botanici Fennici, 52(1–2), 93–100. https://doi.org/10.5735/085.052.0211
  • Çatav, Ş. S., Küçükakyüz, K., Tavşanoğlu, Ç. ve Pausas, J. G. (2018). Effect of fire-derived chemicals on germination and seedling growth in Mediterranean plant species. Basic and Applied Ecology, 30, 65–75. https://doi.org/10.1016/j.baae.2018.05.005
  • Downes, K. S., Light, M. E., Pošta, M., Kohout, L. ve van Staden, J. (2013). Comparison of germination responses of Anigozanthos flavidus (Haemodoraceae), Gyrostemon racemiger and Gyrostemon ramulosus (Gyrostemonaceae) to smoke-water and the smoke-derived compounds karrikinolide (KAR1) and glyceronitrile. Annals of Botany, 111(3), 489–497. https://doi.org/10.1093/aob/mcs300
  • Downes, K. S., Light, M. E., Pošta, M., Kohout, L. ve van Staden, J. (2014). Do fire-related cues, including smoke-water, karrikinolide, glyceronitrile and nitrate, stimulate the germination of 17 Anigozanthos taxa and Blancoa canescens (Haemodoraceae)? Australian Journal of Botany, 62(4), 347–358. https://doi.org/10.1071/BT13189
  • Downes, K. S., Light, M. E., Posta, M. ve van Staden, J. (2015). Fire-related cues and the germination of eight Conostylis (Haemodoraceae) taxa, when freshly collected, after burial and after laboratory storage. Seed Science Research, 25(3), 286–298. https://doi.org/10.1017/S0960258515000227
  • Erik, S. ve Tarıkahya, B. (2004). Türkiye florası üzerine. Kebikeç, 17, 139–163.
  • Flematti, G. R., Dixon, K. W. ve Smith, S. M. (2015). What are karrikins and how were they ‘discovered’by plants? BMC Biology, 13(1), 108. https://doi.org/10.1186/s12915-015-0219-0
  • Flematti, G. R., Ghisalberti, E. L., Dixon, K. W. ve Trengove, R. D. (2004). A compound from smoke that promotes seed germination. Science, 305, 977. https://doi.org/10.1126/science.1099944
  • Flematti, G. R., Merritt, D. J., Piggott, M. J., Trengove, R. D., Smith, S. M., Dixon, K. W. ve Ghisalberti, E. L. (2011). Burning vegetation produces cyanohydrins that liberate cyanide and stimulate seed germination. Nature Communications, 2, 360. https://doi.org/10.1038/ncomms1356
  • Gupta, S., Hrdlička, J., Ngoroyemoto, N., Nemahunguni, N. K., Guckỳ, T., Novák, O., Kulkarni, M. G., Doležal, K. ve Van Staden, J. (2020). Preparation and standardisation of smoke-water for seed germination and plant growth stimulation. Journal of Plant Growth Regulation, 39, 338–345. https://doi.org/10.1007/s00344-019-09985-y
  • He, T., Lamont, B. B. ve Pausas, J. G. (2019). Fire as a key driver of Earth’s biodiversity. Biological Reviews, 94(6), 1983–2010. https://doi.org/10.1111/brv.12544
  • Ice, G. G., Neary, D. G. ve Adams, P. W. (2004). Effects of wildfire on soils and watershed processes. Journal of Forestry, 102(6), 16–20. https://doi.org/10.1093/jof/102.6.16
  • Kazancı, D. D. ve Tavşanoğlu, Ç. (2019). Heat shock-stimulated germination in Mediterranean Basin plants in relation to growth form, dormancy type and distributional range. Folia Geobotanica, 54(1), 85–98. https://doi.org/10.1007/s12224-019-09349-0
  • Keeley, J. E. ve Fotheringham, C. J. (1998). Smoke-induced seed germination in California chaparral. Ecology, 79(7), 2320–2336. https://doi.org/10.2307/176825
  • Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. ve Bradstock, R. A. (2011). Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science, 16(8), 406–411. https://doi.org/10.1016/j.tplants.2011.04.002
  • Lamont, B. B., Pausas, J. G., He, T., Witkowski, E. T. ve Hanley, M. E. (2020). Fire as a selective agent for both serotiny and nonserotiny over space and time. Critical Reviews in Plant Sciences, 39(2), 140–172. https://doi.org/10.1080/07352689.2020.1768465
  • Light, M. E., Burger, B. V., Staerk, D., Kohout, L. ve Van Staden, J. (2010). Butenolides from plant-derived smoke: Natural plant-growth regulators with antagonistic actions on seed germination. Journal of Natural Products, 73(2), 267–269. https://doi.org/10.1021/np900630w
  • Ma, H., Erickson, T. E., Walck, J. L. ve Merritt, D. J. (2020). Interpopulation variation in germination response to fire-related cues and after-ripening in seeds of the evergreen perennial Anigozanthos flavidus (Haemodoraceae). International Journal of Wildland Fire, 29(10), 950–960. https://doi.org/10.1071/WF19195
  • Moreira, B. ve Pausas, J. G. (2018). Shedding light through the smoke on the germination of Mediterranean Basin flora. South African Journal of Botany, 115, 244–250. https://doi.org/10.1016/j.sajb.2016.10.008
  • Moreira, B., Tormo, J., Estrelles, E. ve Pausas, J. G. (2010). Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Annals of Botany, 105(4), 627–635. https://doi.org/10.1093/aob/mcq017
  • Nelson, D. C., Flematti, G. R., Ghisalberti, E. L., Dixon, K. W. ve Smith, S. M. (2012). Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annual Review of Plant Biology, 63, 107–130. https://doi.org/10.1146/annurev-arplant-042811-105545
  • Newton, R. J., Bond, W. J. ve Farrant, J. M. (2006). Effects of seed storage and fire on germination in the nut-fruited Restionaceae species, Cannomois virgata. South African Journal of Botany, 72(1), 177–180. https://doi.org/10.1016/j.sajb.2005.05.005
  • Pausas, J. G., Keeley, J. E. ve Schwilk, D. W. (2017). Flammability as an ecological and evolutionary driver. Journal of Ecology, 105(2), 289–297. https://doi.org/10.1111/1365-2745.12691
  • Quílez, M., Ferreres, F., López-Miranda, S., Salazar, E. ve Jordán, M. J. (2020). Seed oil from Mediterranean aromatic and medicinal plants of the lamiaceae family as a source of bioactive components with nutritional. Antioxidants, 9(6), 510. https://doi.org/10.3390/antiox9060510
  • Simpson, M. G. (2010). Plant systematics. Amsterdam: Elsevier.
  • Takhtajan, A. (2009). Flowering plants (2nd edition). Berlin: Springer-Verlag.
  • Tavşanoğlu, Ç., Ergan, G., Çatav, Ş. S., Zare, G., Küçükakyüz, K. ve Özüdoğru, B. (2017). Multiple fire-related cues stimulate germination in Chaenorhinum rubrifolium (Plantaginaceae), a rare annual in the Mediterranean Basin. Seed Science Research, 27(1), 26–38. https://doi.org/10.1017/S0960258516000283
  • Tavşanoğlu, Ç. ve Pausas, J. G. (2018). A functional trait database for Mediterranean Basin plants. Scientific Data, 5, 180135. https://doi.org/10.1038/sdata.2018.135

Germination Response of Seven Mediterranean Lamiaceae Species to Smoke and Smoke-derived Compounds

Year 2021, Volume: 7 Issue: 4, 478 - 485, 15.12.2021
https://doi.org/10.28979/jarnas.936432

Abstract

Abstract − Plant-derived smoke has been shown to trigger germination of many Lamiaceae species growing in Mediterranean-type ecosystems. However, very little is known about the germination response of Lamiaceae species to smoke-derived compounds, such as karrikinolide (KAR1) and cyanohydrin. In this work, therefore, we aimed to ascertain the effects of smoke-derived compounds on seed germination in seven Mediterranean Lamiaceae species (Ballota acetabulosa, Lavandula stoechas subsp. stoechas, Origanum onites, Phlomis bourgaei, P. lycia, Stachys cretica subsp. smyrnaea, and Teucrium chamaedrys). To achieve this goal, seeds of study species were exposed to different concentrations of smoke-water, KAR1, mandelonitrile (MAN), and KAR1 + MAN. Seeds from treatment groups were then incubated at 20 °C in dark conditions, and germination counts were made twice weekly for 35 days. Our results show that smoke leads to a significant increase in germination percentage of B. acetabulosa, P. lycia, and S. cretica as compared to control conditions. KAR1 stimulated the germination of B. acetabulosa and S. cretica while MAN treatments did not promote the germination of Lamiaceae species. The combination of KAR1 and MAN not only induced the germination of three smoke-sensitive species but also notably increased the germination percentage of T. chamaedrys. In conclusion, our study supports the idea that smoke has a positive impact on the germination of Lamiaceae species and provides evidence that combined application of KAR1 and cyanohydrin is more effective in the stimulation of seed germination than the separate application of these two compounds.

References

  • Adkins, S. W. ve Peters, N. C. B. (2001). Smoke derived from burnt vegetation stimulates germination of arable weeds. Seed Science Research, 11(3), 213–222. https://doi.org/10.1079/SSR200177
  • Arcamone, J. R. ve Jaureguiberry, P. (2018). Germination response of common annual and perennial forbs to heat shock and smoke treatments in the Chaco Serrano, central Argentina. Austral Ecology, 43(5), 567–577. https://doi.org/10.1111/aec.12593
  • Baldos, O. C., DeFrank, J. ve Sakamoto, G. S. (2015). Germination response of dormant tanglehead (Heteropogon contortus) seeds to smoke-infused water and the smoke-associated stimulatory compounds, karrikinolide and cyanide. HortScience, 50(3), 421–429. https://doi.org/10.21273/HORTSCI.50.3.421
  • Baldwin, I. T., Staszak-Kozinski, L. ve Davidson, R. (1994). Up in smoke: I. Smoke-derived germination cues for postfire annual, Nicotiana attenuata torr. Ex. Watson. Journal of Chemical Ecology, 20(9), 2345–2371. https://doi.org/10.1007/BF02033207
  • Burger, B. V., Pošta, M., Light, M. E., Kulkarni, M. G., Viviers, M. Z. ve Van Staden, J. (2018). More butenolides from plant-derived smoke with germination inhibitory activity against karrikinolide. South African Journal of Botany, 115, 256–263. https://doi.org/10.1016/j.sajb.2018.01.023
  • Chuvieco, E., Giglio, L. ve Justice, C. (2008). Global characterization of fire activity: Toward defining fire regimes from Earth observation data. Global Change Biology, 14(7), 1488–1502. https://doi.org/10.1111/j.1365-2486.2008.01585.x
  • Çatav, S. S., Küçükakyüz, K., Akbaş, K. ve Tavşanoğlu, Ç. (2014). Smoke-enhanced seed germination in Mediterranean Lamiaceae. Seed Science Research, 24(3), 257–264. https://doi.org/10.1017/S0960258514000142
  • Çatav, Ş. S., Küçükakyüz, K., Tavşanoğlu, Ç. ve Akbaş, K. (2015). Effects of aqueous smoke and nitrate treatments on germination of 12 eastern Mediterranean Basin plants. Annales Botanici Fennici, 52(1–2), 93–100. https://doi.org/10.5735/085.052.0211
  • Çatav, Ş. S., Küçükakyüz, K., Tavşanoğlu, Ç. ve Pausas, J. G. (2018). Effect of fire-derived chemicals on germination and seedling growth in Mediterranean plant species. Basic and Applied Ecology, 30, 65–75. https://doi.org/10.1016/j.baae.2018.05.005
  • Downes, K. S., Light, M. E., Pošta, M., Kohout, L. ve van Staden, J. (2013). Comparison of germination responses of Anigozanthos flavidus (Haemodoraceae), Gyrostemon racemiger and Gyrostemon ramulosus (Gyrostemonaceae) to smoke-water and the smoke-derived compounds karrikinolide (KAR1) and glyceronitrile. Annals of Botany, 111(3), 489–497. https://doi.org/10.1093/aob/mcs300
  • Downes, K. S., Light, M. E., Pošta, M., Kohout, L. ve van Staden, J. (2014). Do fire-related cues, including smoke-water, karrikinolide, glyceronitrile and nitrate, stimulate the germination of 17 Anigozanthos taxa and Blancoa canescens (Haemodoraceae)? Australian Journal of Botany, 62(4), 347–358. https://doi.org/10.1071/BT13189
  • Downes, K. S., Light, M. E., Posta, M. ve van Staden, J. (2015). Fire-related cues and the germination of eight Conostylis (Haemodoraceae) taxa, when freshly collected, after burial and after laboratory storage. Seed Science Research, 25(3), 286–298. https://doi.org/10.1017/S0960258515000227
  • Erik, S. ve Tarıkahya, B. (2004). Türkiye florası üzerine. Kebikeç, 17, 139–163.
  • Flematti, G. R., Dixon, K. W. ve Smith, S. M. (2015). What are karrikins and how were they ‘discovered’by plants? BMC Biology, 13(1), 108. https://doi.org/10.1186/s12915-015-0219-0
  • Flematti, G. R., Ghisalberti, E. L., Dixon, K. W. ve Trengove, R. D. (2004). A compound from smoke that promotes seed germination. Science, 305, 977. https://doi.org/10.1126/science.1099944
  • Flematti, G. R., Merritt, D. J., Piggott, M. J., Trengove, R. D., Smith, S. M., Dixon, K. W. ve Ghisalberti, E. L. (2011). Burning vegetation produces cyanohydrins that liberate cyanide and stimulate seed germination. Nature Communications, 2, 360. https://doi.org/10.1038/ncomms1356
  • Gupta, S., Hrdlička, J., Ngoroyemoto, N., Nemahunguni, N. K., Guckỳ, T., Novák, O., Kulkarni, M. G., Doležal, K. ve Van Staden, J. (2020). Preparation and standardisation of smoke-water for seed germination and plant growth stimulation. Journal of Plant Growth Regulation, 39, 338–345. https://doi.org/10.1007/s00344-019-09985-y
  • He, T., Lamont, B. B. ve Pausas, J. G. (2019). Fire as a key driver of Earth’s biodiversity. Biological Reviews, 94(6), 1983–2010. https://doi.org/10.1111/brv.12544
  • Ice, G. G., Neary, D. G. ve Adams, P. W. (2004). Effects of wildfire on soils and watershed processes. Journal of Forestry, 102(6), 16–20. https://doi.org/10.1093/jof/102.6.16
  • Kazancı, D. D. ve Tavşanoğlu, Ç. (2019). Heat shock-stimulated germination in Mediterranean Basin plants in relation to growth form, dormancy type and distributional range. Folia Geobotanica, 54(1), 85–98. https://doi.org/10.1007/s12224-019-09349-0
  • Keeley, J. E. ve Fotheringham, C. J. (1998). Smoke-induced seed germination in California chaparral. Ecology, 79(7), 2320–2336. https://doi.org/10.2307/176825
  • Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. ve Bradstock, R. A. (2011). Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science, 16(8), 406–411. https://doi.org/10.1016/j.tplants.2011.04.002
  • Lamont, B. B., Pausas, J. G., He, T., Witkowski, E. T. ve Hanley, M. E. (2020). Fire as a selective agent for both serotiny and nonserotiny over space and time. Critical Reviews in Plant Sciences, 39(2), 140–172. https://doi.org/10.1080/07352689.2020.1768465
  • Light, M. E., Burger, B. V., Staerk, D., Kohout, L. ve Van Staden, J. (2010). Butenolides from plant-derived smoke: Natural plant-growth regulators with antagonistic actions on seed germination. Journal of Natural Products, 73(2), 267–269. https://doi.org/10.1021/np900630w
  • Ma, H., Erickson, T. E., Walck, J. L. ve Merritt, D. J. (2020). Interpopulation variation in germination response to fire-related cues and after-ripening in seeds of the evergreen perennial Anigozanthos flavidus (Haemodoraceae). International Journal of Wildland Fire, 29(10), 950–960. https://doi.org/10.1071/WF19195
  • Moreira, B. ve Pausas, J. G. (2018). Shedding light through the smoke on the germination of Mediterranean Basin flora. South African Journal of Botany, 115, 244–250. https://doi.org/10.1016/j.sajb.2016.10.008
  • Moreira, B., Tormo, J., Estrelles, E. ve Pausas, J. G. (2010). Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Annals of Botany, 105(4), 627–635. https://doi.org/10.1093/aob/mcq017
  • Nelson, D. C., Flematti, G. R., Ghisalberti, E. L., Dixon, K. W. ve Smith, S. M. (2012). Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annual Review of Plant Biology, 63, 107–130. https://doi.org/10.1146/annurev-arplant-042811-105545
  • Newton, R. J., Bond, W. J. ve Farrant, J. M. (2006). Effects of seed storage and fire on germination in the nut-fruited Restionaceae species, Cannomois virgata. South African Journal of Botany, 72(1), 177–180. https://doi.org/10.1016/j.sajb.2005.05.005
  • Pausas, J. G., Keeley, J. E. ve Schwilk, D. W. (2017). Flammability as an ecological and evolutionary driver. Journal of Ecology, 105(2), 289–297. https://doi.org/10.1111/1365-2745.12691
  • Quílez, M., Ferreres, F., López-Miranda, S., Salazar, E. ve Jordán, M. J. (2020). Seed oil from Mediterranean aromatic and medicinal plants of the lamiaceae family as a source of bioactive components with nutritional. Antioxidants, 9(6), 510. https://doi.org/10.3390/antiox9060510
  • Simpson, M. G. (2010). Plant systematics. Amsterdam: Elsevier.
  • Takhtajan, A. (2009). Flowering plants (2nd edition). Berlin: Springer-Verlag.
  • Tavşanoğlu, Ç., Ergan, G., Çatav, Ş. S., Zare, G., Küçükakyüz, K. ve Özüdoğru, B. (2017). Multiple fire-related cues stimulate germination in Chaenorhinum rubrifolium (Plantaginaceae), a rare annual in the Mediterranean Basin. Seed Science Research, 27(1), 26–38. https://doi.org/10.1017/S0960258516000283
  • Tavşanoğlu, Ç. ve Pausas, J. G. (2018). A functional trait database for Mediterranean Basin plants. Scientific Data, 5, 180135. https://doi.org/10.1038/sdata.2018.135
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Ecology
Journal Section Research Article
Authors

Şükrü Serter Çatav 0000-0002-9934-254X

Kenan Akbaş 0000-0002-0198-4668

Publication Date December 15, 2021
Submission Date May 11, 2021
Published in Issue Year 2021 Volume: 7 Issue: 4

Cite

APA Çatav, Ş. S., & Akbaş, K. (2021). Yedi Akdeniz Lamiaceae Türünün Duman ve Duman Kökenli Bileşiklere Olan Çimlenme Tepkisi. Journal of Advanced Research in Natural and Applied Sciences, 7(4), 478-485. https://doi.org/10.28979/jarnas.936432
AMA Çatav ŞS, Akbaş K. Yedi Akdeniz Lamiaceae Türünün Duman ve Duman Kökenli Bileşiklere Olan Çimlenme Tepkisi. JARNAS. December 2021;7(4):478-485. doi:10.28979/jarnas.936432
Chicago Çatav, Şükrü Serter, and Kenan Akbaş. “Yedi Akdeniz Lamiaceae Türünün Duman Ve Duman Kökenli Bileşiklere Olan Çimlenme Tepkisi”. Journal of Advanced Research in Natural and Applied Sciences 7, no. 4 (December 2021): 478-85. https://doi.org/10.28979/jarnas.936432.
EndNote Çatav ŞS, Akbaş K (December 1, 2021) Yedi Akdeniz Lamiaceae Türünün Duman ve Duman Kökenli Bileşiklere Olan Çimlenme Tepkisi. Journal of Advanced Research in Natural and Applied Sciences 7 4 478–485.
IEEE Ş. S. Çatav and K. Akbaş, “Yedi Akdeniz Lamiaceae Türünün Duman ve Duman Kökenli Bileşiklere Olan Çimlenme Tepkisi”, JARNAS, vol. 7, no. 4, pp. 478–485, 2021, doi: 10.28979/jarnas.936432.
ISNAD Çatav, Şükrü Serter - Akbaş, Kenan. “Yedi Akdeniz Lamiaceae Türünün Duman Ve Duman Kökenli Bileşiklere Olan Çimlenme Tepkisi”. Journal of Advanced Research in Natural and Applied Sciences 7/4 (December 2021), 478-485. https://doi.org/10.28979/jarnas.936432.
JAMA Çatav ŞS, Akbaş K. Yedi Akdeniz Lamiaceae Türünün Duman ve Duman Kökenli Bileşiklere Olan Çimlenme Tepkisi. JARNAS. 2021;7:478–485.
MLA Çatav, Şükrü Serter and Kenan Akbaş. “Yedi Akdeniz Lamiaceae Türünün Duman Ve Duman Kökenli Bileşiklere Olan Çimlenme Tepkisi”. Journal of Advanced Research in Natural and Applied Sciences, vol. 7, no. 4, 2021, pp. 478-85, doi:10.28979/jarnas.936432.
Vancouver Çatav ŞS, Akbaş K. Yedi Akdeniz Lamiaceae Türünün Duman ve Duman Kökenli Bileşiklere Olan Çimlenme Tepkisi. JARNAS. 2021;7(4):478-85.


TR Dizin 20466




Academindex 30370    

SOBİAD 20460               

Scilit 30371                            

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).