Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 8 Sayı: 4, 600 - 613, 15.12.2022
https://doi.org/10.28979/jarnas.1069147

Öz

Kaynakça

  • Chitte P., Jadhav P. K., & Bansode S. S. (2013). Statistic and Dynamic Analysis of Typical Wing Structure of Aircraft Using Nastran, International Journal of Application or Innovation in Engineering & Management, ISSN: 2319-4847.
  • Kumara S. M., Raghavendra K., Venkataswamy A. M., Ramachandra H. V. (2012). Fractographic Analysis of Tensile Failures of Aerospace Grade Composites, Material Research, 15(6), 990-997.
  • Schmid Fuertes T.A., Kruse T., Korwien T., & Geistbeck M. (2015). Bonding of CFRP Primary Aerospace Structures - Discussion of the Certification Boundary Conditions and Related Technology Fields Addressing the Needs for Development, Composite Interfaces. 22(8), pp. 795-808.
  • Davies P., Choqueuse D., & Devaux H. (2012). Failure of Polymer Matrix Composites in Marine and Off-shore Applications, Editors: Robinson P., Greenhalgh E., Pinho S., Failure Mechanisms in Polymer Matrix Composites, 1st ed., Woodhead Publishing, Cambridge, pp. 300-336.
  • Aviation Outlook (2021), Available at: https://www.compositesworld.com/articles/aviation-outlook-fuel-pricing-ignites-demand-for-composites-in-commercial-transports.
  • Shama R. N., Simha, T. G. A., Rao K. P., Kumar R. G. V. V. (2020), Carbon Composites Are Becoming Competitive and Cost Effective, Infosys Limited, Retrieved from: https://www.infosys.com/engineering-services/white-papers/Documents/carbon-composites-cost-effective.pdf/.
  • Choubey G., Suneetha L., K.M. Pandey. (2018), Composite Materials Used in Scramjet- A Review, Materials Today: Proceedings, 5, pp. 1321-1326.
  • Lee J. Y., Yan J. A., Chua C. K. (2017), Fundamentals, and applications of 3D printing for novel materials, Applied Materials Today, 7, pp. 120-133.
  • Delogu M., Zanchi L., Dattilo C.A., Pierini M. (2017), Innovative Composites and Hybrid Materials for Electric Vehicles Lightweight Design in a Sustainability Perspective, Materials Today Communications, 13, pp. 192-209.
  • Karthigeyan P., Raja M. S., Hariharan R., Karthikeyan R., Prakash S. (2017), Performance Evaluation of Composite Material for Aircraft Industries, Materials Today: Proceedings, 4, pp.3263-3269.
  • Yadav S., Gangwar S., Singh S. (2017), Micro/Nano Reinforced Filled Metal Alloy Composites: A Review Over Current Development in Aerospace and Automobile Applications, Materials Today: Proceedings, 4, pp. 5571-5582.
  • Schwartz M. (1992), Composite Materials Handbook, 2nd ed., McGraw-Hill, New York.
  • Basri, Ernnie I., Mohamed T.H. Sultan, M. Faizal, Adi A. Basri, Mohd. F. Abas, M.S. Abdul Majid, J.S. Mandeep, Kamarul A. Ahmad. (2019), Performance Analysis of Composite Ply Orientation in Aeronautical Application of Unmanned Aerial Vehicle (UAV) NACA4415 Wing, Journal of Materials Research and Technolog, 8(5), pp. 3822-3834. https://doi.org/10.1016/j.jmrt.2019.06.044.
  • Semrád K., Lipovský P., Čerňan J., Jurčovič M. (2014), Analysis of All-Composite Wing Design Containing Magnetic Microwires, Procedia Engineering, 96, pp. 428-434, https://doi.org/10.1016/j.proeng.2014.12.112.
  • Onour H. K., Jahangiri M., Sedaghat A. (2011), Theoretical Aerodynamic Analysis of Six Airfoils for Use on Small Wind Turbines, Proceedings of the 1st International Conference on Emerging Trends in Energy Conservation – ETEC, Tehran, Iran, 20-21 November.
  • Parashar H. (2015), Calculation of Aerodynamic Characteristics of NACA 2415, 23012, 23015 Airfoils Using Computational Fluid Dynamics (CFD), International Journal of Science, Engineering and Technology Research, 4(3), pp. 610–614.
  • Bright G., Broughton K., Williams D., Wunderlin N., Martin D. (2016), Multipurpose Off-road Flying Vehicle, Design and Research Project 2, University of Kwazulu-Natal, Discipline of Mechanical Engineering, Durban.
  • Syamsuar S., Djatmiko E. B., Erwandi E., Mujahid A. S., Subchan S. (2016), The Hydroplaning Simulation of Flying Boat Remote Control Model, Jurnal Teknologi, 78(6), pp. 191–197, DOI:10.11113/jt.v78.4267.
  • Jony H. N., Hossain S., Raiyan F. M., Akanda U. N. M. (2014), A Comparative Flow Analysis of Naca6409 and Naca4412 Aerofoil, International Journal of Research in Engineering and Technology, 03(10), pp. 342–350.
  • Soutis C. (2005), Fibre Reinforced Composites in Aircraft Construction, Progress in Aerospace Science, 41(2), pp. 143-151, https://doi.org/10.1016/j.paerosci.2005.02.004.
  • Kanesan G., Mansor S., Abdul-Latif A. (2014), Validation of UAV Wing Structural Model for Finite Element Analysis, J Teknol, 71, pp. 1-5.
  • Fertis D. G. (1994), New Airfoil‐Design Concept with Improved Aerodynamic Characteristics, Journal of Aerospace Engineering, 7(3), pp. 328-339.
  • Sobieczky H. (1999), Parametric Airfoils and Wings, In: Fujii K., Dulikravich G.S., Recent Development of Aerodynamic Design Methodologies, Notes on Numerical Fluid Mechanics (NNFM), vol 65, Vieweg+Teubner Verlag, https://doi.org/10.1007/978-3-32289952- 1_4.
  • Jaroslaw S., Raphael T. (1996), Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments, Structural Optimization, 14, pp. 1-23.
  • См Егер. (1986), Основы автоматизированного проектирования самолетов.Машиностроение, pp. 232, Москва.
  • Anderson J. D. (1999), Aircraft Performance and Design, Boston, WCB/McGraw-Hill.
  • Anderson J. D. (2001), Introduction to Flight, McGraw-Hill, New York.
  • Meganathan V. (2014), Aircraft Design Project-I: Heavy Business Jet.
  • Henne P. A. (1990), Applied Computational Aerodynamics, Washington DC, American Institute of Aeronautics and Astronautics.
  • Sadraey M. (2013), Aircraft Design: A Systems Engineering Approach, 1st ed., Wiley, New Hampshire.
  • Jones W. P., Launder B. E. (1972), The Prediction of Laminarization with a Two-Equation Model of Turbulence, International Journal of Heat and Mass Transfer, vol. 15, pp. 301-314.
  • Launder B. E., Sharma B. I. (1974), Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc, Letters in Heat and Mass Transfer, vol. 1, no. 2, pp. 131-138.
  • Lift-to-drag ratio- Wikipedia. (2019), Retrieved from: http://www.wikizero.biz/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvTGlmdC10by1kcmFnX3JhdGlv.
  • Stollery J. L. (2017), Aerodynamics, Aeronautics and Flight Mechanics, In Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 211, https://doi.org/10.1177/095441009721100102.
  • Sharma S. (2016), An Aerodynamic Comparative Analysis of Airfoils for Low-Speed Aircrafts, International Journal of Engineering Research, V5 (11), pp. 525–529. https://doi.org/10.17577/ijertv5is110361.
  • Epoksi hexion. (2021), Retrieved from: https://www.dostkimya.com/tr/urunler/epoksi-sistemler/laminasyon-epoksi-hexion-mgs-l285-sistemi.
  • Yongchang Y., Zhang S., Li H., Wang X., Tang Y. (2017), Modal and Harmonic Response Analysis of Key Components of Ditch Device Based on ANSYS, Procedia Engineering, 174, pp. 956–64, https://doi.org/10.1016/j.proeng.2017.01.247.

Comparative analysis and manufacturing of airfoil structures suitable for use at low speeds

Yıl 2022, Cilt: 8 Sayı: 4, 600 - 613, 15.12.2022
https://doi.org/10.28979/jarnas.1069147

Öz

An aerodynamic technique to calculating lift and drag coefficients is one of the required instruments in the wing design process. During the last decades, several tools and software have been developed according to aero-dynamics and numerical methods. Nowadays, aeronautical architecture requires many calculations. Today’s techno-logists use a variety of simulation techniques to avoid a expensive model testing. This paper explains how wing profiles can be modelled using ANSYS Fluent and tested by low-speed tests considering experimental literature re-sults. With the selected wing profile, the geometry is shaped in two dimensions and designed in three dimensions. Computational fluid dynamics (CFD) was adopted as the method for studying wing profiles. Wing profiles created at 0 to 20-degree attack angles are calculated in the simulation area equal to the actual wind tunnel scale, and equations are solved using the RNG k-Epsilon turbulence model. The process of developing the grids was realized with Ansys Mesher software. The solution stage and the result show operations were carried out with the CFD Post software. The study of the low velocity and high transport wing profiles, the drag coefficient, the lift coefficient, and the effect on the lift-drag ratio were studied using a numerical procedure. After determining the high efficiency of wing profi-les, production of a selected profile began with a static examination.

Kaynakça

  • Chitte P., Jadhav P. K., & Bansode S. S. (2013). Statistic and Dynamic Analysis of Typical Wing Structure of Aircraft Using Nastran, International Journal of Application or Innovation in Engineering & Management, ISSN: 2319-4847.
  • Kumara S. M., Raghavendra K., Venkataswamy A. M., Ramachandra H. V. (2012). Fractographic Analysis of Tensile Failures of Aerospace Grade Composites, Material Research, 15(6), 990-997.
  • Schmid Fuertes T.A., Kruse T., Korwien T., & Geistbeck M. (2015). Bonding of CFRP Primary Aerospace Structures - Discussion of the Certification Boundary Conditions and Related Technology Fields Addressing the Needs for Development, Composite Interfaces. 22(8), pp. 795-808.
  • Davies P., Choqueuse D., & Devaux H. (2012). Failure of Polymer Matrix Composites in Marine and Off-shore Applications, Editors: Robinson P., Greenhalgh E., Pinho S., Failure Mechanisms in Polymer Matrix Composites, 1st ed., Woodhead Publishing, Cambridge, pp. 300-336.
  • Aviation Outlook (2021), Available at: https://www.compositesworld.com/articles/aviation-outlook-fuel-pricing-ignites-demand-for-composites-in-commercial-transports.
  • Shama R. N., Simha, T. G. A., Rao K. P., Kumar R. G. V. V. (2020), Carbon Composites Are Becoming Competitive and Cost Effective, Infosys Limited, Retrieved from: https://www.infosys.com/engineering-services/white-papers/Documents/carbon-composites-cost-effective.pdf/.
  • Choubey G., Suneetha L., K.M. Pandey. (2018), Composite Materials Used in Scramjet- A Review, Materials Today: Proceedings, 5, pp. 1321-1326.
  • Lee J. Y., Yan J. A., Chua C. K. (2017), Fundamentals, and applications of 3D printing for novel materials, Applied Materials Today, 7, pp. 120-133.
  • Delogu M., Zanchi L., Dattilo C.A., Pierini M. (2017), Innovative Composites and Hybrid Materials for Electric Vehicles Lightweight Design in a Sustainability Perspective, Materials Today Communications, 13, pp. 192-209.
  • Karthigeyan P., Raja M. S., Hariharan R., Karthikeyan R., Prakash S. (2017), Performance Evaluation of Composite Material for Aircraft Industries, Materials Today: Proceedings, 4, pp.3263-3269.
  • Yadav S., Gangwar S., Singh S. (2017), Micro/Nano Reinforced Filled Metal Alloy Composites: A Review Over Current Development in Aerospace and Automobile Applications, Materials Today: Proceedings, 4, pp. 5571-5582.
  • Schwartz M. (1992), Composite Materials Handbook, 2nd ed., McGraw-Hill, New York.
  • Basri, Ernnie I., Mohamed T.H. Sultan, M. Faizal, Adi A. Basri, Mohd. F. Abas, M.S. Abdul Majid, J.S. Mandeep, Kamarul A. Ahmad. (2019), Performance Analysis of Composite Ply Orientation in Aeronautical Application of Unmanned Aerial Vehicle (UAV) NACA4415 Wing, Journal of Materials Research and Technolog, 8(5), pp. 3822-3834. https://doi.org/10.1016/j.jmrt.2019.06.044.
  • Semrád K., Lipovský P., Čerňan J., Jurčovič M. (2014), Analysis of All-Composite Wing Design Containing Magnetic Microwires, Procedia Engineering, 96, pp. 428-434, https://doi.org/10.1016/j.proeng.2014.12.112.
  • Onour H. K., Jahangiri M., Sedaghat A. (2011), Theoretical Aerodynamic Analysis of Six Airfoils for Use on Small Wind Turbines, Proceedings of the 1st International Conference on Emerging Trends in Energy Conservation – ETEC, Tehran, Iran, 20-21 November.
  • Parashar H. (2015), Calculation of Aerodynamic Characteristics of NACA 2415, 23012, 23015 Airfoils Using Computational Fluid Dynamics (CFD), International Journal of Science, Engineering and Technology Research, 4(3), pp. 610–614.
  • Bright G., Broughton K., Williams D., Wunderlin N., Martin D. (2016), Multipurpose Off-road Flying Vehicle, Design and Research Project 2, University of Kwazulu-Natal, Discipline of Mechanical Engineering, Durban.
  • Syamsuar S., Djatmiko E. B., Erwandi E., Mujahid A. S., Subchan S. (2016), The Hydroplaning Simulation of Flying Boat Remote Control Model, Jurnal Teknologi, 78(6), pp. 191–197, DOI:10.11113/jt.v78.4267.
  • Jony H. N., Hossain S., Raiyan F. M., Akanda U. N. M. (2014), A Comparative Flow Analysis of Naca6409 and Naca4412 Aerofoil, International Journal of Research in Engineering and Technology, 03(10), pp. 342–350.
  • Soutis C. (2005), Fibre Reinforced Composites in Aircraft Construction, Progress in Aerospace Science, 41(2), pp. 143-151, https://doi.org/10.1016/j.paerosci.2005.02.004.
  • Kanesan G., Mansor S., Abdul-Latif A. (2014), Validation of UAV Wing Structural Model for Finite Element Analysis, J Teknol, 71, pp. 1-5.
  • Fertis D. G. (1994), New Airfoil‐Design Concept with Improved Aerodynamic Characteristics, Journal of Aerospace Engineering, 7(3), pp. 328-339.
  • Sobieczky H. (1999), Parametric Airfoils and Wings, In: Fujii K., Dulikravich G.S., Recent Development of Aerodynamic Design Methodologies, Notes on Numerical Fluid Mechanics (NNFM), vol 65, Vieweg+Teubner Verlag, https://doi.org/10.1007/978-3-32289952- 1_4.
  • Jaroslaw S., Raphael T. (1996), Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments, Structural Optimization, 14, pp. 1-23.
  • См Егер. (1986), Основы автоматизированного проектирования самолетов.Машиностроение, pp. 232, Москва.
  • Anderson J. D. (1999), Aircraft Performance and Design, Boston, WCB/McGraw-Hill.
  • Anderson J. D. (2001), Introduction to Flight, McGraw-Hill, New York.
  • Meganathan V. (2014), Aircraft Design Project-I: Heavy Business Jet.
  • Henne P. A. (1990), Applied Computational Aerodynamics, Washington DC, American Institute of Aeronautics and Astronautics.
  • Sadraey M. (2013), Aircraft Design: A Systems Engineering Approach, 1st ed., Wiley, New Hampshire.
  • Jones W. P., Launder B. E. (1972), The Prediction of Laminarization with a Two-Equation Model of Turbulence, International Journal of Heat and Mass Transfer, vol. 15, pp. 301-314.
  • Launder B. E., Sharma B. I. (1974), Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc, Letters in Heat and Mass Transfer, vol. 1, no. 2, pp. 131-138.
  • Lift-to-drag ratio- Wikipedia. (2019), Retrieved from: http://www.wikizero.biz/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvTGlmdC10by1kcmFnX3JhdGlv.
  • Stollery J. L. (2017), Aerodynamics, Aeronautics and Flight Mechanics, In Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 211, https://doi.org/10.1177/095441009721100102.
  • Sharma S. (2016), An Aerodynamic Comparative Analysis of Airfoils for Low-Speed Aircrafts, International Journal of Engineering Research, V5 (11), pp. 525–529. https://doi.org/10.17577/ijertv5is110361.
  • Epoksi hexion. (2021), Retrieved from: https://www.dostkimya.com/tr/urunler/epoksi-sistemler/laminasyon-epoksi-hexion-mgs-l285-sistemi.
  • Yongchang Y., Zhang S., Li H., Wang X., Tang Y. (2017), Modal and Harmonic Response Analysis of Key Components of Ditch Device Based on ANSYS, Procedia Engineering, 174, pp. 956–64, https://doi.org/10.1016/j.proeng.2017.01.247.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Makaleler
Yazarlar

Mert Gökdemir 0000-0002-2047-1331

Satılmış Ürgün 0000-0003-3889-6909

Sinan Fidan 0000-0003-4385-4981

Erken Görünüm Tarihi 13 Aralık 2022
Yayımlanma Tarihi 15 Aralık 2022
Gönderilme Tarihi 7 Şubat 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 8 Sayı: 4

Kaynak Göster

APA Gökdemir, M., Ürgün, S., & Fidan, S. (2022). Comparative analysis and manufacturing of airfoil structures suitable for use at low speeds. Journal of Advanced Research in Natural and Applied Sciences, 8(4), 600-613. https://doi.org/10.28979/jarnas.1069147
AMA Gökdemir M, Ürgün S, Fidan S. Comparative analysis and manufacturing of airfoil structures suitable for use at low speeds. JARNAS. Aralık 2022;8(4):600-613. doi:10.28979/jarnas.1069147
Chicago Gökdemir, Mert, Satılmış Ürgün, ve Sinan Fidan. “Comparative Analysis and Manufacturing of Airfoil Structures Suitable for Use at Low Speeds”. Journal of Advanced Research in Natural and Applied Sciences 8, sy. 4 (Aralık 2022): 600-613. https://doi.org/10.28979/jarnas.1069147.
EndNote Gökdemir M, Ürgün S, Fidan S (01 Aralık 2022) Comparative analysis and manufacturing of airfoil structures suitable for use at low speeds. Journal of Advanced Research in Natural and Applied Sciences 8 4 600–613.
IEEE M. Gökdemir, S. Ürgün, ve S. Fidan, “Comparative analysis and manufacturing of airfoil structures suitable for use at low speeds”, JARNAS, c. 8, sy. 4, ss. 600–613, 2022, doi: 10.28979/jarnas.1069147.
ISNAD Gökdemir, Mert vd. “Comparative Analysis and Manufacturing of Airfoil Structures Suitable for Use at Low Speeds”. Journal of Advanced Research in Natural and Applied Sciences 8/4 (Aralık 2022), 600-613. https://doi.org/10.28979/jarnas.1069147.
JAMA Gökdemir M, Ürgün S, Fidan S. Comparative analysis and manufacturing of airfoil structures suitable for use at low speeds. JARNAS. 2022;8:600–613.
MLA Gökdemir, Mert vd. “Comparative Analysis and Manufacturing of Airfoil Structures Suitable for Use at Low Speeds”. Journal of Advanced Research in Natural and Applied Sciences, c. 8, sy. 4, 2022, ss. 600-13, doi:10.28979/jarnas.1069147.
Vancouver Gökdemir M, Ürgün S, Fidan S. Comparative analysis and manufacturing of airfoil structures suitable for use at low speeds. JARNAS. 2022;8(4):600-13.


TR Dizin 20466




Academindex 30370    

SOBİAD 20460               

Scilit 30371                        

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).