Analysis of Acoustic Signals of Footsteps from the Piezoelectric Sensor
Year 2023,
Volume: 9 Issue: 4, 931 - 937, 22.12.2023
Bilge Çiğdem Çiftçi
,
Gamze Kaya
,
Mustafa Kurt
Abstract
Some materials can change their electrical polarization under the influence of a mechanical stress due to the piezoelectric effect. This stress-induced change in polarization produces a potential difference across the material. For this reason, the piezoelectric material generates an electrical signal when it is subjected to a pressure from acoustic energy. In this study, analysis of acoustic signals of footsteps from the piezoe-lectric sensor, especially for human footsteps, have been studied by considering the analytical relationship between the electrical signal generated from the sensor and the acoustic signal that provides the effect. We analyzed the acoustic signal data by assuming that the electrical output voltage of the piezoelectric sensor completely coincides with the frequency of the acoustic signals. The original signal was pre-processed using filtering systems and analyzed by the fast Fourier transform and power spectral density methods to extract descriptive spectral features of the signal. This preliminary study proposed a method as a sensor based piezoelectric security system to detect the acoustic signals that can indicate possible dangers to the safety of people or property. The source of the acoustic signal can be determined by matching it with the existing database using machine learning algorithms like face recognition systems for future goals.
Supporting Institution
Çanakkale Onsekiz Mart University
Project Number
FYL-2019-2912
Thanks
This work was supported by the Office of Scientific Research Projects Coordination at Çanakkale Onsekiz Mart University. Grant number: FYL-2019-2912
References
- Bregar, T., Starc, B., Čepon, G., & Boltežar, M. (2021). On the Use of PVDF Sensors for Experimental Modal Analysis. Topics in Modal Analysis & Testing, 8, 279-281. doi: https://doi.org/10.1007/978-3-030-47717-2_28
- Chelli, Z., Achour, H., Saidi, M., Laghrouche, M., Chaouchi, A., Rguiti, M., Courtois, C. (2021). Fabrication and characterization of PU/NKLNT/CFs based lead-free piezoelectric composite for energy harvesting application. Polymer-Plastics Technology and Materials, 1-13. doi: https://doi.org/10.1080/25740881.2021.1888995
- Chuaqui, T. R. C., Roque, C. M. C., & Ribeiro, P. (2018). Active vibration control of piezoelectric smart beams with radial basis function generated finite difference collocation method. Journal of Intelligent Material Systems and Structures, 29(13), 2728-2743. doi: https://doi.org/10.1177/1045389X18778363
- Ekimov, A., & Sabatier, J. (2006). Broad frequency acoustic response of ground/floor to human footsteps. Defense and Security Symposium, 6241, 62410L. doi: https://doi.org/10.1117/12.663978
- Ekimov, A., & Sabatier, J. M. (2006). Vibration and sound signatures of human footsteps in buildingsa). The Journal of the Acoustical Society of America, 120(2), 762-768. doi: https://doi.org/10.1121/1.2217371
- Ekimov, A., & Sabatier, J. M. (2007). Ultrasonic wave generation due to human footsteps on the ground. The Journal of the Acoustical Society of America, 121(3), EL114-EL119. doi: https://doi.org/10.1121/1.2437847
- Guigon, R., Chaillout, J.-J., Jager, T., & Despesse, G. (2008). Harvesting raindrop energy: experimental study. Smart Materials and Structures, 17(1), 015039. doi: https://doi.org/10.1088/0964-1726/17/01/015039
- Høgsberg, J. (2021). Vibration control by piezoelectric proof-mass absorber with resistive-inductive shunt. Mechanics of Advanced Materials and Structures, 28(2), 141-153. doi:https://doi.org/10.1080/15376494.2018.1551587
- Jacquelin, E., Adhikari, S., & Friswell, M. I. (2011). A piezoelectric device for impact energy harvesting. Smart Materials and Structures, 20(10), 105008. doi:https://doi.org/10.1088/0964-1726/20/10/105008
- Khasawneh, Q. A., Jaradat, M. A. K., Naji, M. I., & Al-Azzeh, M. Y. (2018). Enhancement of hard disk drive manipulator using piezoelectric actuator mechanisms. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(11), 517. doi:https://doi.org/10.1007/s40430-018-1432-x
- Kundu, S., & Nemade, H. B. (2016). Modeling and Simulation of a Piezoelectric Vibration Energy Harvester. Procedia Engineering, 144, 568-575. doi:https://doi.org/10.1016/j.proeng.2016.05.043
- Levy, R., Moras, J., & Pannetier, B. (2017). Vibrating Beam MEMS Seismometer for Footstep and Vehicle Detection. IEEE Sensors Journal, 17(22), 7306-7310. doi:https://doi.org/10.1109/JSEN.2017.2731858
- Li, Y.-J., Zhang, J., Jia, Z.-Y., & Qian, M. (2009). A novel piezoelectric 6-component heavy force/moment sensor for huge heavy-load manipulator's gripper. Mechanical Systems and Signal Processing, 23(5), 1644-1651. doi: https://doi.org/10.1016/j.ymssp.2009.02.004
- Lim, S. C., & Choi, S. B. (2007). Vibration control of an HDD disk-spindle system utilizing piezoelectric bimorph shunt damping: I. Dynamic analysis and modeling of the shunted drive. Smart Materials and Structures, 16(3), 891-900. doi: https://doi.org/10.1088/0964-1726/16/3/039
- Liu, P., Yan, P., & Özbay, H. (2018). Design and trajectory tracking control of a piezoelectric nano-manipulator with actuator saturations. Mechanical Systems and Signal Processing, 111, 529-544. doi: https://doi.org/10.1016/j.ymssp.2018.04.002
- Moro, L., & Benasciutti, D. (2010). Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers. Smart Materials and Structures, 19(11), 115011. doi: https://doi.org/10.1088/0964-1726/19/11/115011
- Ohashi, F., Kajiwara, I., Iwadare, M., & Arisaka, T. (2005). Optimal design of smart carriage arm in magnetic disk drive for vibration suppression. Microsystem Technologies, 11(8), 711-717. doi: https://doi.org/10.1007/s00542-005-0550-4
- Peigney, M., & Siegert, D. (2013). Piezoelectric energy harvesting from traffic-induced bridge vibrations. Smart Materials and Structures, 22(9), 095019. doi: https://doi.org/10.1088/0964-1726/22/9/095019
- Pu, Y., Zhou, H., & Meng, Z. (2019). Multi-channel adaptive active vibration control of piezoelectric smart plate with online secondary path modelling using PZT patches. Mechanical Systems and Signal Processing, 120, 166-179. doi:https://doi.org/10.1016/j.ymssp.2018.10.019
- Qiu, Z.-c., Wang, B., Zhang, X.-m., & Han, J.-d. (2013). Direct adaptive fuzzy control of a translating piezoelectric flexible manipulator driven by a pneumatic rodless cylinder. Mechanical Systems and Signal Processing, 36(2), 290-316. doi:https://doi.org/10.1016/j.ymssp.2012.10.008
- Salvador, F. J., Plazas, A. H., Gimeno, J., & Carreres, M. (2012). Complete modelling of a piezo actuator last-generation injector for diesel injection systems. International Journal of Engine Research, 15(1), 3-19. doi: https://doi.org/10.1177/1468087412455373
- Smith, R. C., Industrial, S. f., & Mathematics, A. (2005). Smart Material Systems: Model Developments: Society for Industrial and Applied Mathematics Frontiers in applied mathematics Series Number 32.
- Stefanski, F., Minorowicz, B., Persson, J., Plummer, A., & Bowen, C. (2017). Non-linear control of a hydraulic piezo-valve using a generalised Prandtl–Ishlinskii hysteresis model. Mechanical Systems and Signal Processing, 82, 412-431. doi: https://doi.org/10.1016/j.ymssp.2016.05.032
- Tian, Y., Cai, K., Zhang, D., Liu, X., Wang, F., & Shirinzadeh, B. (2019). Development of a XYZ scanner for home-made atomic force microscope based on FPAA control. Mechanical Systems and Signal Processing, 131, 222-242. doi:https://doi.org/10.1016/j.ymssp.2019.05.057
- van den Ende, D. A., van de Wiel, H. J., Groen, W. A., & van der Zwaag, S. (2011). Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites. Smart Materials and Structures, 21(1), 015011. doi: https://doi.org/10.1088/0964-1726/21/1/015011
- Wang, Y.-J., Ho, J.-L., & Jiang, Y.-B. (2021). A self-positioning linear actuator based on a piezoelectric slab with multiple pads. Mechanical Systems and Signal Processing, 150, 107245. doi: https://doi.org/10.1016/j.ymssp.2020.107245
- Wu, N., Bao, B., & Wang, Q. (2021). Review on engineering structural designs for efficient piezoelectric energy harvesting to obtain high power output. Engineering Structures, 235, 112068. doi: https://doi.org/10.1016/j.engstruct.2021.112068
- Xiang, H. J., Wang, J. J., Shi, Z. F., & Zhang, Z. W. (2013). Theoretical analysis of piezoelectric energy harvesting from traffic induced deformation of pavements. Smart Materials and Structures, 22(9), 095024. doi: https://doi.org/10.1088/0964-1726/22/9/095024
- Yatim, H., Ismail, F., S.J, F., hj.bakri, A., & Effendy, S. (2018). A Development of Piezoelectric Model as an Energy Harvester from Mechanical Vibration. Chemical Engineering Transactions, 63, 775-780. doi: https://doi.org/10.3303/CET1863130
Year 2023,
Volume: 9 Issue: 4, 931 - 937, 22.12.2023
Bilge Çiğdem Çiftçi
,
Gamze Kaya
,
Mustafa Kurt
Project Number
FYL-2019-2912
References
- Bregar, T., Starc, B., Čepon, G., & Boltežar, M. (2021). On the Use of PVDF Sensors for Experimental Modal Analysis. Topics in Modal Analysis & Testing, 8, 279-281. doi: https://doi.org/10.1007/978-3-030-47717-2_28
- Chelli, Z., Achour, H., Saidi, M., Laghrouche, M., Chaouchi, A., Rguiti, M., Courtois, C. (2021). Fabrication and characterization of PU/NKLNT/CFs based lead-free piezoelectric composite for energy harvesting application. Polymer-Plastics Technology and Materials, 1-13. doi: https://doi.org/10.1080/25740881.2021.1888995
- Chuaqui, T. R. C., Roque, C. M. C., & Ribeiro, P. (2018). Active vibration control of piezoelectric smart beams with radial basis function generated finite difference collocation method. Journal of Intelligent Material Systems and Structures, 29(13), 2728-2743. doi: https://doi.org/10.1177/1045389X18778363
- Ekimov, A., & Sabatier, J. (2006). Broad frequency acoustic response of ground/floor to human footsteps. Defense and Security Symposium, 6241, 62410L. doi: https://doi.org/10.1117/12.663978
- Ekimov, A., & Sabatier, J. M. (2006). Vibration and sound signatures of human footsteps in buildingsa). The Journal of the Acoustical Society of America, 120(2), 762-768. doi: https://doi.org/10.1121/1.2217371
- Ekimov, A., & Sabatier, J. M. (2007). Ultrasonic wave generation due to human footsteps on the ground. The Journal of the Acoustical Society of America, 121(3), EL114-EL119. doi: https://doi.org/10.1121/1.2437847
- Guigon, R., Chaillout, J.-J., Jager, T., & Despesse, G. (2008). Harvesting raindrop energy: experimental study. Smart Materials and Structures, 17(1), 015039. doi: https://doi.org/10.1088/0964-1726/17/01/015039
- Høgsberg, J. (2021). Vibration control by piezoelectric proof-mass absorber with resistive-inductive shunt. Mechanics of Advanced Materials and Structures, 28(2), 141-153. doi:https://doi.org/10.1080/15376494.2018.1551587
- Jacquelin, E., Adhikari, S., & Friswell, M. I. (2011). A piezoelectric device for impact energy harvesting. Smart Materials and Structures, 20(10), 105008. doi:https://doi.org/10.1088/0964-1726/20/10/105008
- Khasawneh, Q. A., Jaradat, M. A. K., Naji, M. I., & Al-Azzeh, M. Y. (2018). Enhancement of hard disk drive manipulator using piezoelectric actuator mechanisms. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(11), 517. doi:https://doi.org/10.1007/s40430-018-1432-x
- Kundu, S., & Nemade, H. B. (2016). Modeling and Simulation of a Piezoelectric Vibration Energy Harvester. Procedia Engineering, 144, 568-575. doi:https://doi.org/10.1016/j.proeng.2016.05.043
- Levy, R., Moras, J., & Pannetier, B. (2017). Vibrating Beam MEMS Seismometer for Footstep and Vehicle Detection. IEEE Sensors Journal, 17(22), 7306-7310. doi:https://doi.org/10.1109/JSEN.2017.2731858
- Li, Y.-J., Zhang, J., Jia, Z.-Y., & Qian, M. (2009). A novel piezoelectric 6-component heavy force/moment sensor for huge heavy-load manipulator's gripper. Mechanical Systems and Signal Processing, 23(5), 1644-1651. doi: https://doi.org/10.1016/j.ymssp.2009.02.004
- Lim, S. C., & Choi, S. B. (2007). Vibration control of an HDD disk-spindle system utilizing piezoelectric bimorph shunt damping: I. Dynamic analysis and modeling of the shunted drive. Smart Materials and Structures, 16(3), 891-900. doi: https://doi.org/10.1088/0964-1726/16/3/039
- Liu, P., Yan, P., & Özbay, H. (2018). Design and trajectory tracking control of a piezoelectric nano-manipulator with actuator saturations. Mechanical Systems and Signal Processing, 111, 529-544. doi: https://doi.org/10.1016/j.ymssp.2018.04.002
- Moro, L., & Benasciutti, D. (2010). Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers. Smart Materials and Structures, 19(11), 115011. doi: https://doi.org/10.1088/0964-1726/19/11/115011
- Ohashi, F., Kajiwara, I., Iwadare, M., & Arisaka, T. (2005). Optimal design of smart carriage arm in magnetic disk drive for vibration suppression. Microsystem Technologies, 11(8), 711-717. doi: https://doi.org/10.1007/s00542-005-0550-4
- Peigney, M., & Siegert, D. (2013). Piezoelectric energy harvesting from traffic-induced bridge vibrations. Smart Materials and Structures, 22(9), 095019. doi: https://doi.org/10.1088/0964-1726/22/9/095019
- Pu, Y., Zhou, H., & Meng, Z. (2019). Multi-channel adaptive active vibration control of piezoelectric smart plate with online secondary path modelling using PZT patches. Mechanical Systems and Signal Processing, 120, 166-179. doi:https://doi.org/10.1016/j.ymssp.2018.10.019
- Qiu, Z.-c., Wang, B., Zhang, X.-m., & Han, J.-d. (2013). Direct adaptive fuzzy control of a translating piezoelectric flexible manipulator driven by a pneumatic rodless cylinder. Mechanical Systems and Signal Processing, 36(2), 290-316. doi:https://doi.org/10.1016/j.ymssp.2012.10.008
- Salvador, F. J., Plazas, A. H., Gimeno, J., & Carreres, M. (2012). Complete modelling of a piezo actuator last-generation injector for diesel injection systems. International Journal of Engine Research, 15(1), 3-19. doi: https://doi.org/10.1177/1468087412455373
- Smith, R. C., Industrial, S. f., & Mathematics, A. (2005). Smart Material Systems: Model Developments: Society for Industrial and Applied Mathematics Frontiers in applied mathematics Series Number 32.
- Stefanski, F., Minorowicz, B., Persson, J., Plummer, A., & Bowen, C. (2017). Non-linear control of a hydraulic piezo-valve using a generalised Prandtl–Ishlinskii hysteresis model. Mechanical Systems and Signal Processing, 82, 412-431. doi: https://doi.org/10.1016/j.ymssp.2016.05.032
- Tian, Y., Cai, K., Zhang, D., Liu, X., Wang, F., & Shirinzadeh, B. (2019). Development of a XYZ scanner for home-made atomic force microscope based on FPAA control. Mechanical Systems and Signal Processing, 131, 222-242. doi:https://doi.org/10.1016/j.ymssp.2019.05.057
- van den Ende, D. A., van de Wiel, H. J., Groen, W. A., & van der Zwaag, S. (2011). Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites. Smart Materials and Structures, 21(1), 015011. doi: https://doi.org/10.1088/0964-1726/21/1/015011
- Wang, Y.-J., Ho, J.-L., & Jiang, Y.-B. (2021). A self-positioning linear actuator based on a piezoelectric slab with multiple pads. Mechanical Systems and Signal Processing, 150, 107245. doi: https://doi.org/10.1016/j.ymssp.2020.107245
- Wu, N., Bao, B., & Wang, Q. (2021). Review on engineering structural designs for efficient piezoelectric energy harvesting to obtain high power output. Engineering Structures, 235, 112068. doi: https://doi.org/10.1016/j.engstruct.2021.112068
- Xiang, H. J., Wang, J. J., Shi, Z. F., & Zhang, Z. W. (2013). Theoretical analysis of piezoelectric energy harvesting from traffic induced deformation of pavements. Smart Materials and Structures, 22(9), 095024. doi: https://doi.org/10.1088/0964-1726/22/9/095024
- Yatim, H., Ismail, F., S.J, F., hj.bakri, A., & Effendy, S. (2018). A Development of Piezoelectric Model as an Energy Harvester from Mechanical Vibration. Chemical Engineering Transactions, 63, 775-780. doi: https://doi.org/10.3303/CET1863130