Research Article
BibTex RIS Cite

Composite Sand–Clay Infrastructural Soil Fills: Characteristic Consolidation and Hydraulic Properties

Year 2024, Volume: 10 Issue: 3, 640 - 658, 30.09.2024
https://doi.org/10.28979/jarnas.1411201

Abstract

In the design construction of infrastructural projects comprised of geotechnical applications, including composite soil fill layers, compacted sand-clay soil fills are widely preferred as barrier layers, particularly in solid waste landfills, to minimize leakage, to prevent leachate from entering into groundwater. When bentonite clay with high water absorption capacity and low hydraulic conductivity is mixed with sand possessing relatively enhanced frictional properties, greater shear strength capacity, an effective fill material exhibiting low sensitivity to frost, and low volume change in case of wetting, drying can be obtained. On the other hand, when montmorillonite clay is loaded, due to highly critical volumetric contraction or dilation characteristics (high compressibility nature of clay), the soil fill composed of sand-clay will significantly consolidate. This situation may cause differential settlement problems of infrastructural fills employed in geotechnical applications. In this regard, the load conditions (mechanical effects) and the environmental conditions (physicochemical effects) in the field control compressibility characteristics and consolidation properties of sand-bentonite clay mixtures. This will ultimately impact the desired stability conditions of sand-clay soil layers built for constructed infrastructural fill, resulting in a deviation from anticipated performance conditions. To this end, in this study, the specimens of sand-bentonite clay mixtures prepared with different contents of sand-bentonite clay were subjected to one-dimensional consolidation tests to investigate the effect of bentonite content used in the mixture on consolidation behavior, hydraulic properties, and effect of sand amount on rate of consolidation and on resulting compressive strength behavior.

References

  • T. Chalermyanont, S. Arrykul, Compacted sand-bentonite mixtures for hydraulic containment liners, Songklanakarin Journal of Science and Technology 27 (2) (2005) 313–323.
  • A. Iravanian, H. Bilsel, Tensile strength properties of sand-bentonite mixtures enhanced with cement, Procedia Engineering 143 (2016) 111–118.
  • A. Iravanian, H. Bilsel, Strength characterization of sand-bentonite mixtures and the effect of cement additives, Marine Georesources & Geotechnology 34 (3) (2016) 210–218.
  • M. H. Gleason, D. E. Daniel, G. R. Eykhole, Calcium and sodium bentonite for hydraulic contaminant applications, Journal of Geotechnical and Geoenvironmental Engineering 123 (5) (1997) 438–445.
  • M. K. Kockar, H. Akgün, Ö. Aktürk, Preliminary evaluation of a compacted bentonite/sand mixture as a landfill liner material, The Journal of Solid Waste Technology and Management 31 (4) (2005) 182–187.
  • İ. Bozbey, S. Saltı, Evaluation of Turkey's solid waste control regulations from a "performance-based approach" perspective, ZMGM 14th National Conference, Isparta, 2012, pp. 931–940.
  • A. K. Mishra, M. Ohtsubo, L. Y. Li, T. Higashi, Influence of the bentonite on the consolidation behaviour of soil-bentonite mixtures, Carbonates and Evaporites 25 (1) (2010) 43–49.
  • J. Dutta, A. K. Mishra, Consolidation behaviour of bentonites in the presence of salt solutions, Applied Clay Science 120 (1) (2016) 61–69.
  • R. G. Robinson, M. M. Allam, Effect of clay mineralogy on coefficient of consolidation, Clays and Clay Minerals 46 (5) (1998) 596–600.
  • N. Kantesaria, D. Chotani, H. Ganvit, Evaluation of geotechnical properties of pond ash-bentonite mixture as a potential landfill liner material, in: S. Kolathayar, N. Vinod Chandra Menon, K. S. Sreekeshava (Eds.), International Conference on Interdisciplinary Approaches in Civil Engineering for Sustainable Development, Bangalore, 2024, pp. 191–199.
  • C. Jiang, X. Ding, H. Fang, Q. Ou, L. Niu, The undrained shear behavior of clean coral silt and coral silt-sand mixtures, ASTM Journal of Testing and Evaluation 51 (5) (2023) 3596–3611.
  • A. Chandra, S. Siddiqua, Sustainable utilization of chemically depolymerized polyethylene terephthalate (PET) waste to enhance sand-bentonite clay liners, Waste Management 166 (1) (2023) 346–359.
  • Z. Sun, Y. Xiao, M. Meng, H. Liu, J. Shi, Thermally induced volume change behavior of sand-clay mixtures, Acta Geotechnica 18 (5) (2023) 2373–2388.
  • A. Khoshghalb, J. Li, B. Shahbodagh, One-dimensional cyclic loading tests on saturated and unsaturated sand-clay mixtures, in: M. Bardanis (Ed.), 8th International Conference on Unsaturated Soils, UNSAT 2023, Milos, 2023, Article Number 03008 6 pages.
  • ASTM D422-63, Standard test method for particle-size analysis of soils, ASTM International, West Conshohocken, PA, Reapproved 63 (2007) 1–8.
  • J. D. Frost, J. -Y. Park, A critical assessment of the moist tamping technique, ASTM Geotechnical Testing Journal 26 (1) (2003) 57–70.
  • N. S. Rad, M. T. Tumay, Factors affecting sand specimen preparation by raining, ASTM Geotechnical Testing Journal 10(1) (1987) 3–37.
  • ASTM D2435-65T, Standard test method for one-dimensional consolidation properties of soils, ASTM International, West Conshohocken, PA, 4(August) (1990) 196–205.
  • ASTM D2435M-11, Standard test methods for one-dimensional consolidation properties of soils using incremental loading, ASTM International, West Conshohocken, PA, 4(June) (2020) 1–10.
  • R. Shenbaga, R. Kaniraj, V. Gayathri, Permeability and consolidation characteristics of compacted fly ash, Journal of Energy Engineering 130 (1) (2004) 18–43.
  • D. W. Taylor, Fundamentals of soil mechanics, John Wiley & Sons, New York, 1948.
  • A. Önalp, E. Arel, S. Sert, Geotechnical knowledge 1 (in Turkish), Birsen Publication, İstanbul, 2010.
  • B. A. Porbaha, T. B. S. Pradhan, N. Yamane, Time effect on shear strength and permeability of fly ash, Journal of Energy Engineering 126 (1) (2000) 15–31.
  • V. P. D. Samarasinghe, A. Mahinda, H. Huang Yang, Permeability and consolidation of normally consolidated soils, Journal of Geotechnical Engineering, 108 (1982) 835–850.
Year 2024, Volume: 10 Issue: 3, 640 - 658, 30.09.2024
https://doi.org/10.28979/jarnas.1411201

Abstract

References

  • T. Chalermyanont, S. Arrykul, Compacted sand-bentonite mixtures for hydraulic containment liners, Songklanakarin Journal of Science and Technology 27 (2) (2005) 313–323.
  • A. Iravanian, H. Bilsel, Tensile strength properties of sand-bentonite mixtures enhanced with cement, Procedia Engineering 143 (2016) 111–118.
  • A. Iravanian, H. Bilsel, Strength characterization of sand-bentonite mixtures and the effect of cement additives, Marine Georesources & Geotechnology 34 (3) (2016) 210–218.
  • M. H. Gleason, D. E. Daniel, G. R. Eykhole, Calcium and sodium bentonite for hydraulic contaminant applications, Journal of Geotechnical and Geoenvironmental Engineering 123 (5) (1997) 438–445.
  • M. K. Kockar, H. Akgün, Ö. Aktürk, Preliminary evaluation of a compacted bentonite/sand mixture as a landfill liner material, The Journal of Solid Waste Technology and Management 31 (4) (2005) 182–187.
  • İ. Bozbey, S. Saltı, Evaluation of Turkey's solid waste control regulations from a "performance-based approach" perspective, ZMGM 14th National Conference, Isparta, 2012, pp. 931–940.
  • A. K. Mishra, M. Ohtsubo, L. Y. Li, T. Higashi, Influence of the bentonite on the consolidation behaviour of soil-bentonite mixtures, Carbonates and Evaporites 25 (1) (2010) 43–49.
  • J. Dutta, A. K. Mishra, Consolidation behaviour of bentonites in the presence of salt solutions, Applied Clay Science 120 (1) (2016) 61–69.
  • R. G. Robinson, M. M. Allam, Effect of clay mineralogy on coefficient of consolidation, Clays and Clay Minerals 46 (5) (1998) 596–600.
  • N. Kantesaria, D. Chotani, H. Ganvit, Evaluation of geotechnical properties of pond ash-bentonite mixture as a potential landfill liner material, in: S. Kolathayar, N. Vinod Chandra Menon, K. S. Sreekeshava (Eds.), International Conference on Interdisciplinary Approaches in Civil Engineering for Sustainable Development, Bangalore, 2024, pp. 191–199.
  • C. Jiang, X. Ding, H. Fang, Q. Ou, L. Niu, The undrained shear behavior of clean coral silt and coral silt-sand mixtures, ASTM Journal of Testing and Evaluation 51 (5) (2023) 3596–3611.
  • A. Chandra, S. Siddiqua, Sustainable utilization of chemically depolymerized polyethylene terephthalate (PET) waste to enhance sand-bentonite clay liners, Waste Management 166 (1) (2023) 346–359.
  • Z. Sun, Y. Xiao, M. Meng, H. Liu, J. Shi, Thermally induced volume change behavior of sand-clay mixtures, Acta Geotechnica 18 (5) (2023) 2373–2388.
  • A. Khoshghalb, J. Li, B. Shahbodagh, One-dimensional cyclic loading tests on saturated and unsaturated sand-clay mixtures, in: M. Bardanis (Ed.), 8th International Conference on Unsaturated Soils, UNSAT 2023, Milos, 2023, Article Number 03008 6 pages.
  • ASTM D422-63, Standard test method for particle-size analysis of soils, ASTM International, West Conshohocken, PA, Reapproved 63 (2007) 1–8.
  • J. D. Frost, J. -Y. Park, A critical assessment of the moist tamping technique, ASTM Geotechnical Testing Journal 26 (1) (2003) 57–70.
  • N. S. Rad, M. T. Tumay, Factors affecting sand specimen preparation by raining, ASTM Geotechnical Testing Journal 10(1) (1987) 3–37.
  • ASTM D2435-65T, Standard test method for one-dimensional consolidation properties of soils, ASTM International, West Conshohocken, PA, 4(August) (1990) 196–205.
  • ASTM D2435M-11, Standard test methods for one-dimensional consolidation properties of soils using incremental loading, ASTM International, West Conshohocken, PA, 4(June) (2020) 1–10.
  • R. Shenbaga, R. Kaniraj, V. Gayathri, Permeability and consolidation characteristics of compacted fly ash, Journal of Energy Engineering 130 (1) (2004) 18–43.
  • D. W. Taylor, Fundamentals of soil mechanics, John Wiley & Sons, New York, 1948.
  • A. Önalp, E. Arel, S. Sert, Geotechnical knowledge 1 (in Turkish), Birsen Publication, İstanbul, 2010.
  • B. A. Porbaha, T. B. S. Pradhan, N. Yamane, Time effect on shear strength and permeability of fly ash, Journal of Energy Engineering 126 (1) (2000) 15–31.
  • V. P. D. Samarasinghe, A. Mahinda, H. Huang Yang, Permeability and consolidation of normally consolidated soils, Journal of Geotechnical Engineering, 108 (1982) 835–850.
There are 24 citations in total.

Details

Primary Language English
Subjects Civil Geotechnical Engineering
Journal Section Research Article
Authors

Tanay Karademir 0000-0002-9689-2140

Burcu Dışkaya 0000-0002-6170-3856

Publication Date September 30, 2024
Submission Date December 28, 2023
Acceptance Date July 9, 2024
Published in Issue Year 2024 Volume: 10 Issue: 3

Cite

APA Karademir, T., & Dışkaya, B. (2024). Composite Sand–Clay Infrastructural Soil Fills: Characteristic Consolidation and Hydraulic Properties. Journal of Advanced Research in Natural and Applied Sciences, 10(3), 640-658. https://doi.org/10.28979/jarnas.1411201
AMA Karademir T, Dışkaya B. Composite Sand–Clay Infrastructural Soil Fills: Characteristic Consolidation and Hydraulic Properties. JARNAS. September 2024;10(3):640-658. doi:10.28979/jarnas.1411201
Chicago Karademir, Tanay, and Burcu Dışkaya. “Composite Sand–Clay Infrastructural Soil Fills: Characteristic Consolidation and Hydraulic Properties”. Journal of Advanced Research in Natural and Applied Sciences 10, no. 3 (September 2024): 640-58. https://doi.org/10.28979/jarnas.1411201.
EndNote Karademir T, Dışkaya B (September 1, 2024) Composite Sand–Clay Infrastructural Soil Fills: Characteristic Consolidation and Hydraulic Properties. Journal of Advanced Research in Natural and Applied Sciences 10 3 640–658.
IEEE T. Karademir and B. Dışkaya, “Composite Sand–Clay Infrastructural Soil Fills: Characteristic Consolidation and Hydraulic Properties”, JARNAS, vol. 10, no. 3, pp. 640–658, 2024, doi: 10.28979/jarnas.1411201.
ISNAD Karademir, Tanay - Dışkaya, Burcu. “Composite Sand–Clay Infrastructural Soil Fills: Characteristic Consolidation and Hydraulic Properties”. Journal of Advanced Research in Natural and Applied Sciences 10/3 (September 2024), 640-658. https://doi.org/10.28979/jarnas.1411201.
JAMA Karademir T, Dışkaya B. Composite Sand–Clay Infrastructural Soil Fills: Characteristic Consolidation and Hydraulic Properties. JARNAS. 2024;10:640–658.
MLA Karademir, Tanay and Burcu Dışkaya. “Composite Sand–Clay Infrastructural Soil Fills: Characteristic Consolidation and Hydraulic Properties”. Journal of Advanced Research in Natural and Applied Sciences, vol. 10, no. 3, 2024, pp. 640-58, doi:10.28979/jarnas.1411201.
Vancouver Karademir T, Dışkaya B. Composite Sand–Clay Infrastructural Soil Fills: Characteristic Consolidation and Hydraulic Properties. JARNAS. 2024;10(3):640-58.


TR Dizin 20466




Academindex 30370    

SOBİAD 20460               

Scilit 30371                            

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).