Research Article
BibTex RIS Cite

GP-Optimized E-Nose: A Low-Cost Solution for Apple Pesticide Detection

Year 2025, Volume: 11 Issue: 3, 276 - 285, 30.09.2025
https://doi.org/10.28979/jarnas.1705283

Abstract

This study presents a cost-effective, user-friendly electronic nose (e-nose) system for detecting Malathion pesticide residues on apples. Genetic Programming (GP) was utilized for system optimization. Adapting a previous methodology with different fruits and pesticides, we analyzed 100 apple samples (sprayed and control) using an 11-sensor e-nose. GP was employed to classify data, derive sensor output equations, and select optimal sensor combinations, by aiming to reduce hardware costs and computational load. The optimized system achieved a significant level of classification success. It demonstrated approximately 92\% validation accuracy with only three sensors and achieved 100\% validation accuracy when six sensors were used. These findings offer a viable, accurate, and economical alternative for pesticide detection. Future work is planned to expand the database and develop a home-use device.

References

  • M. Wesoły, W. Przewodowski, P. Ciosek-Skibińska, Electronic noses and electronic tongues for agricultural purposes, TrAC Trends in Analytical Chemistry 164 (2023) 117082.
  • D. Chen, B. Wang, T. Zhang, Z. Chang, Towards accuracy recognition and content estimation of typical pesticides in groundwater via electronic nose, Sensors and Actuators A: Physical 362 (2023) 114642.
  • J. Qiao, Y. Lv, Y. Feng, C. Liu, Y. Zhang, J. Li, X. Weng, Research on soil pesticide residue detection using an electronic nose based on hybrid models, Agronomy 14(4) (2024) 766.
  • C. M. Durán Acevedo, D. D. Cárdenas Niño, J. K. Carrillo Gómez, Sensory perception systems and machine learning methods for pesticide detection in fruits, Applied Sciences 14(17) (2024) 8074.
  • T. Seesaard, N. Goel, M. Kumar, C. Wongchoosuk, Advances in gas sensors and electronic nose technologies for agricultural cycle applications, Computers and Electronics in Agriculture 193 (2022) 106673.
  • B. Wang, D. Chen, X. Weng, Z. Chang, Development an electronic nose to recognize pesticides in groundwater, Talanta 269 (2024) 125506.
  • B. H. Tozlu, Electronic detection of pesticide residues on cherry fruits, International Journal of Computational and Experimental Science and Engineering 10(3) (2024) 364–370.
  • M. M. Bordbar, T. A. Nguyen, A. Q. Tran, H. Bagheri, Optoelectronic nose based on an origami paper sensor for selective detection of pesticide aerosols, Scientific Reports 10 (2020) 17412.
  • A. Amkor, N. El Barbri, A measurement prototype based on gas sensors for detection of pesticide residues in edible mint, Journal of Food Measurement and Characterization 15 (2021) 170–180.
  • M. D. H. Prodhan, M. W. Akon, S. N. Alam, Determination of pre-harvest interval for quinalphos, Malathion, Diazinon and cypermethrin in major vegetables, Journal of Environmental and Analytical Toxicology 8(1) (2018).
  • F. Malhat, M. Abdel-Megeed, E. S. Saber, S. A. S. Shokr, A. N. Saber, Monitoring and risk assessment of pesticide residues in bananas: Insights from Egypt, Journal of Food Composition and Analysis 143 (2025) 107610.
  • Y. Liu, S. Liu, Y. Zhang, D. Qin, Z. Zheng, G. Zhu, X. Li, The degradation behaviour, residue distribution, and dietary risk assessment of malathion on vegetables and fruits in China by GC-FPD, Food Control 107 (2020) 106754.
  • M. H. Kodandaram, K. Banerjee, A. B. Rai, B. Singh, Pre-and post-harvest pesticide contamination management for production of quality vegetables, in: Advances in Postharvest Technologies of Vegetable Crops (2018) 443–483.
  • T.C. Tarım ve Orman Bakanlığı, Accessed 23 May 2025, [https://bku.tarimorman.gov.tr/](https://bku.tarimorman.gov.tr/).
  • J. R. Koza, *On the Programming of Computers by Means of Natural Selection*, MIT Press, 1993.
  • J. R. Koza, Genetic programming as a means for programming computers by natural selection, Statistics and Computing 4(2) (1994) 87–112.
  • M. S. Ahmed, A. Begum, D. Sarker, Determination of pre-harvest interval for dimethoate and quinalphos in selected vegetables, Asian-Australasian Journal of Bioscience and Biotechnology 5(1) (2020) 42–47.
  • F. Malhat, K. M. Kasiotis, S. Shalaby, Magnitude of cyantraniliprole residues in tomato following open field application: pre-harvest interval determination and risk assessment, Environmental Monitoring and Assessment 190 (2018) 1–10.
  • J. H. Holland, *Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence*, MIT Press, 1992.
  • M. O'Neill, R. Poli, W. B. Langdon, N. F. McPhee, A field guide to genetic programming, 2008, Accessed 23 May 2025 [http://www.gp-field-guide.org.uk](http://www.gp-field-guide.org.uk).
  • J. Miller, A. Turner, Cartesian genetic programming, in: A. I. E. Alcazar (Ed.), Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, (2015) pp. 179–198.
There are 21 citations in total.

Details

Primary Language English
Subjects Pattern Recognition
Journal Section Research Article
Authors

Ahmet Yılmaz 0000-0002-4109-3480

Cemaleddin Şimşek 0000-0002-0888-052X

Early Pub Date September 30, 2025
Publication Date September 30, 2025
Submission Date May 23, 2025
Acceptance Date September 2, 2025
Published in Issue Year 2025 Volume: 11 Issue: 3

Cite

APA Yılmaz, A., & Şimşek, C. (2025). GP-Optimized E-Nose: A Low-Cost Solution for Apple Pesticide Detection. Journal of Advanced Research in Natural and Applied Sciences, 11(3), 276-285. https://doi.org/10.28979/jarnas.1705283
AMA Yılmaz A, Şimşek C. GP-Optimized E-Nose: A Low-Cost Solution for Apple Pesticide Detection. JARNAS. September 2025;11(3):276-285. doi:10.28979/jarnas.1705283
Chicago Yılmaz, Ahmet, and Cemaleddin Şimşek. “GP-Optimized E-Nose: A Low-Cost Solution for Apple Pesticide Detection”. Journal of Advanced Research in Natural and Applied Sciences 11, no. 3 (September 2025): 276-85. https://doi.org/10.28979/jarnas.1705283.
EndNote Yılmaz A, Şimşek C (September 1, 2025) GP-Optimized E-Nose: A Low-Cost Solution for Apple Pesticide Detection. Journal of Advanced Research in Natural and Applied Sciences 11 3 276–285.
IEEE A. Yılmaz and C. Şimşek, “GP-Optimized E-Nose: A Low-Cost Solution for Apple Pesticide Detection”, JARNAS, vol. 11, no. 3, pp. 276–285, 2025, doi: 10.28979/jarnas.1705283.
ISNAD Yılmaz, Ahmet - Şimşek, Cemaleddin. “GP-Optimized E-Nose: A Low-Cost Solution for Apple Pesticide Detection”. Journal of Advanced Research in Natural and Applied Sciences 11/3 (September2025), 276-285. https://doi.org/10.28979/jarnas.1705283.
JAMA Yılmaz A, Şimşek C. GP-Optimized E-Nose: A Low-Cost Solution for Apple Pesticide Detection. JARNAS. 2025;11:276–285.
MLA Yılmaz, Ahmet and Cemaleddin Şimşek. “GP-Optimized E-Nose: A Low-Cost Solution for Apple Pesticide Detection”. Journal of Advanced Research in Natural and Applied Sciences, vol. 11, no. 3, 2025, pp. 276-85, doi:10.28979/jarnas.1705283.
Vancouver Yılmaz A, Şimşek C. GP-Optimized E-Nose: A Low-Cost Solution for Apple Pesticide Detection. JARNAS. 2025;11(3):276-85.


TR Dizin 20466


SAO/NASA Astrophysics Data System (ADS)    34270

                                                   American Chemical Society-Chemical Abstracts Service CAS    34922 


DOAJ 32869

EBSCO 32870

Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).