Research Article
BibTex RIS Cite

Investigation of Structural and Photocatalytic Properties of CeO2-Based Oxides with Different Nickel Additive Ratios (3%, 6%, 9%Ni) Synthesized by Glycine-Assisted Combustion Method

Year 2025, Volume: 2 Issue: 2, 12 - 21, 26.12.2025

Abstract

This study successfully synthesized cerium dioxide nanoparticles with varying nickel (Ni) doping ratios (CeO2:xNi) (x = 3%,6%,9%) using the glycine-assisted combustion method.Starting materials included cerium nitrate, nickel nitrate, and glycine. The resulting powders were heat-treated at 8000C for 2 hours to enhance crystallinity. The structural properties were thoroughly characterized using X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), and Raman Spectroscopy. Specifically, Raman analysis confirmed the formation of structural defects and oxygen vacancies due to Ni doping. The photocatalytic activity of the nanoparticles was evaluated by measuring the degradation of organic dyes (methylene blue and methyl blue) under a 300 W xenon lamp. Adsorption-desorption equilibrium was reached in the dark, and degradation kinetics were monitored via UV-Vis spectroscopy (200-800 nm) and modeled using the Langmuir-Hinshelwood model. The results demonstrate that Ni doping effectively modifies the CeO2 structure, promoting oxygen vacancy formation.This structural change significantly enhanced the photocatalytic performance, offering a valuable approach for developing high-performance, cost-effective photocatalysts for environmental remediation.

Thanks

We would like to thank Prof. Dr. Süleyman KERLİ and Assoc. Prof. Dr. Handan ÖZLÜ TORUN for their assistance with this study.

References

  • [1]. Sadiq, M. U., Shah, A., Zahid, A., Javaid, A., & Iftikhar, F. J. (2025). Nanosensor for the detection of eosin yellow and its photocatalytic degradation using phytosynthesized cerium oxide nanoparticles. RSC advances, 15(6), 4095-4110.
  • [2]. Akpan, U. G., & Hameed, B. H. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. Journal of hazardous materials, 170(2-3), 520-529.
  • [3]. Balkan, M. E., Palabıçak, H. İ., & Soğuksu, A. K. (2025). ZnO nanopartikülleri tarafından metilen mavisi, rodamine B, malahit yeşili ve Kongo kırmızısı boyalarının fotokatalitik parçalanması. KİÜ Fen, Mühendislik ve Teknoloji Dergisi, 2(1), 11-21.
  • [4]. Kistan, A., Priya, G. H. H., Raj, S. J., & Mayavan, L. (2025). Improved photocatalytic activity of Ce-doped NiO nanoparticles against methylene blue and rhodamine B dyes. Ionics, 31(1), 1139-1152.
  • [5]. Chhandak, A. K., Israni, R., & Trivedi, A. V. (2017). Real Life Application of Xenon: A Critical Review. Int. J. Curr. Microbiol. Appl. Sci, 6, 2063-2068.
  • [6]. Koe, W. S., Lee, J. W., Chong, W. C., Pang, Y. L., & Sim, L. C. (2020). An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environmental Science and Pollution Research, 27(3), 2522-2565.
  • [7]. Kumar, A., & Pandey, G. (2017). A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater. Sci. Eng. Int. J, 1(3), 1-10.
  • [8]. Keerthana, M., Malini, T. P., Kamaraj, P., Vivekanand, P. A., Arulnangai, R., Kumar, S. J. S., Harikumar, S., Arumugam, N., Almansour, A. I., & Perumal, K. (2025). Efficient photocatalytic degradation of water pollutant Brufen using lutetium doped cerium oxide nanoparticles synthesized by chemical precipitation method. Journal of the Taiwan Institute of Chemical Engineers, 166, 105118.
  • [9]. Kusuma, K. B., Manju, M., Ravikumar, C. R., Raghavendra, N., Amulya, M. S., Nagaswarupa, H. P., Ananda Murthy, H. C., Anil Kumar, M. R., & Shekhar, T. S. (2022). Photocatalytic degradation of Methylene Blue and electrochemical sensing of paracetamol using Cerium oxide nanoparticles synthesized via sonochemical route. Applied Surface Science Advances, 11, 100304.
  • [10]. Muduli, S. K., Wang, S., Chen, S., Ng, C. F., Huan, C. H. A., Sum, T. C., & Soo, H. S. (2014). Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes. Beilstein journal of nanotechnology, 5(1), 517-523.
  • [11]. Kalaycıoğlu, Z., Özuğur Uysal, B., Pekcan, O., & Erim, F. B. (2023). Efficient photocatalytic degradation of methylene blue dye from aqueous solution with cerium oxide nanoparticles and graphene oxide-doped polyacrylamide. ACS omega, 8(14), 13004-13015.
  • [12]. Narender, S. S., Varma, V. V. S., Srikar, C. S., Ruchitha, J., Varma, P. A., & Praveen, B. V. S. (2022). Nickel oxide nanoparticles: a brief review of their synthesis, characterization, and applications. Chemical Engineering & Technology, 45(3), 397-09.
  • [13]. Shi, M., Qiu, T., Tang, B., Zhang, G., Yao, R., Xu, W., ... & Peng, J. (2021). Temperature-controlled crystal size of wide band gap nickel oxide and its application in electrochromism. Micromachines, 12(1), 80.
  • [14]. Cempel, M., & Nikel, G. J. P. J. S. (2006). Nickel: a review of its sources and environmental toxicology. Polish journal of environmental studies, 15(3).
  • [15]. Khan, M. I. Preparation of Ce-Doped Nickel Oxide Nanocomposites Via Sol-Gel Route and Their Photocatalytic Performance Against Sulfur Red Dye. Available at SSRN 4778958.
  • [16]. Kerli, S., Kavgacı, M., Soğuksu, A. K., & Avar, B. (2022). Photocatalytic degradation of methylene blue, rhodamine-B, and malachite green by Ag@ ZnO/TiO2. Brazilian Journal of Physics, 52(1), 22.
  • [17]. Murugadoss, G., Kumar, M. R., Murugan, D., Koutavarapu, R., Al-Ansari, M. M., & Aldawsari, M. (2023). Ultra-fast photocatalytic degradation and seed germination of band gap tunable nickel doping ceria nanoparticles. Chemosphere, 333, 138934.
  • [18]. Jia, X., Song, Z., Zhang, J., Qiao, J., Liu, C., Zhang, L., ... & Wang, X. (2025). Efficient Photocatalytic Hydrogen Evolution via Synergistic Effects of Ce-doped Ni-MOF and Protonated g-C3N4 Heterojunctions. Journal of Environmental Chemical Engineering, 118263.
  • [19]. Lyon, L. A., Keating, C. D., Fox, A. P., Baker, B. E., He, L., Nicewarner, S. R., ... & Natan, M. J. (1998). Raman spectroscopy. Analytical Chemistry, 70(12), 341-362.
  • [20]. Schilling, C., Hofmann, A., Hess, C., & Ganduglia-Pirovano, M. V. (2017). Raman spectra of polycrystalline CeO2: a density functional theory study. The Journal of Physical Chemistry C, 121(38), 20834-20849.
  • [21]. Kırkgeçit, N., Kırkgeçit, R., & Kırkgeçit, A. (2024). Glisin Yakma Tekniği ile Sentezlenen Ce1-xLaxO2 (x= 0, 04) Nanoparçacıklarının Faz Oluşumu ve Kristal Yapıları Üzerinde Glisin Miktarının Etkisi. KİÜ Fen, Mühendislik ve Teknoloji Dergisi, 1(1), 43-50.
  • [22]. Trabelsi, H., Bejar, M., Dhahri, E., Graça, M. P. F., Valente, M. A., Soares, M. J., & Sobolev, N. A. (2017). Raman, EPR and ethanol sensing properties of oxygen-Vacancies SrTiO3-δ compounds. Applied Surface Science, 426, 386-390.
  • [23]. Manjanna, J., Jakati, M. H., & Momin, N. (2025). Improved ionic conductivity of La and Mg co-doped ceria nanocrystals synthesized by auto-combustion method. Ceramics International, 51(1), 411-422.
  • [24]. Phokha, S., Hunpratub, S., Chanlek, N., Sonsupap, S., & Maensiri, S. (2018). Synthesis, characterization and electrochemical performance of carbon/Ni-doped CeO2 composites. Journal of Alloys and Compounds, 750, 788-797.
  • [25]. Prajapati, P. K., Malik, A., Nandal, N., Pandita, S., Singh, R., Bhandari, S., ... & Jain, S. L. (2022). Morphology controlled Fe and Ni-doped CeO2 nanorods as an excellent heterojunction photocatalyst for CO2 reduction. Applied Surface Science, 588, 152912.
  • [26]. Raees, A., Jamal, M. A., Ahmad, A., Ahmad, I., Saeed, M., Habila, M. A., AlMasoud, N., & Alomar, T. S. (2022). Synthesis and characterization of Ceria incorporated Nickel oxide nanocomposite for promising degradation of methylene blue via photocatalysis. International Journal of Environmental Science and Technology, 19(11), 10969–10984.
  • [27]. Saravanan, K. K., Ramanujum, K., & Kumaran, S. (2024). Synergistic design and fabrication of g-C3N4 decorated Ni-doped CeO2 nanocomposite: a highly efficient photo and electrocatalyst for enhanced energy storage and environmental remediation. Diamond and Related Materials, 142, 110780.
There are 27 citations in total.

Details

Primary Language English
Subjects Catalytic Activity
Journal Section Research Article
Authors

Derya Kara 0009-0001-1967-6516

Sultan Fırtına 0009-0005-0765-9750

Nuran Bilmez 0009-0000-4651-4291

Submission Date November 14, 2025
Acceptance Date December 15, 2025
Publication Date December 26, 2025
Published in Issue Year 2025 Volume: 2 Issue: 2

Cite

APA Kara, D., Fırtına, S., & Bilmez, N. (2025). Investigation of Structural and Photocatalytic Properties of CeO2-Based Oxides with Different Nickel Additive Ratios (3%, 6%, 9%Ni) Synthesized by Glycine-Assisted Combustion Method. Journal of Advanced Science, Technology, and Engineering, 2(2), 12-21.
AMA Kara D, Fırtına S, Bilmez N. Investigation of Structural and Photocatalytic Properties of CeO2-Based Oxides with Different Nickel Additive Ratios (3%, 6%, 9%Ni) Synthesized by Glycine-Assisted Combustion Method. JASTE. December 2025;2(2):12-21.
Chicago Kara, Derya, Sultan Fırtına, and Nuran Bilmez. “Investigation of Structural and Photocatalytic Properties of CeO2-Based Oxides With Different Nickel Additive Ratios (3%, 6%, 9%Ni) Synthesized by Glycine-Assisted Combustion Method”. Journal of Advanced Science, Technology, and Engineering 2, no. 2 (December 2025): 12-21.
EndNote Kara D, Fırtına S, Bilmez N (December 1, 2025) Investigation of Structural and Photocatalytic Properties of CeO2-Based Oxides with Different Nickel Additive Ratios (3%, 6%, 9%Ni) Synthesized by Glycine-Assisted Combustion Method. Journal of Advanced Science, Technology, and Engineering 2 2 12–21.
IEEE D. Kara, S. Fırtına, and N. Bilmez, “Investigation of Structural and Photocatalytic Properties of CeO2-Based Oxides with Different Nickel Additive Ratios (3%, 6%, 9%Ni) Synthesized by Glycine-Assisted Combustion Method”, JASTE, vol. 2, no. 2, pp. 12–21, 2025.
ISNAD Kara, Derya et al. “Investigation of Structural and Photocatalytic Properties of CeO2-Based Oxides With Different Nickel Additive Ratios (3%, 6%, 9%Ni) Synthesized by Glycine-Assisted Combustion Method”. Journal of Advanced Science, Technology, and Engineering 2/2 (December2025), 12-21.
JAMA Kara D, Fırtına S, Bilmez N. Investigation of Structural and Photocatalytic Properties of CeO2-Based Oxides with Different Nickel Additive Ratios (3%, 6%, 9%Ni) Synthesized by Glycine-Assisted Combustion Method. JASTE. 2025;2:12–21.
MLA Kara, Derya et al. “Investigation of Structural and Photocatalytic Properties of CeO2-Based Oxides With Different Nickel Additive Ratios (3%, 6%, 9%Ni) Synthesized by Glycine-Assisted Combustion Method”. Journal of Advanced Science, Technology, and Engineering, vol. 2, no. 2, 2025, pp. 12-21.
Vancouver Kara D, Fırtına S, Bilmez N. Investigation of Structural and Photocatalytic Properties of CeO2-Based Oxides with Different Nickel Additive Ratios (3%, 6%, 9%Ni) Synthesized by Glycine-Assisted Combustion Method. JASTE. 2025;2(2):12-21.