Research Article
BibTex RIS Cite

GENERALIZED IDENTITIES OF BIVARIATE FIBONACCI AND BIVARIATE LUCAS POLYNOMIALS

Year 2020, Volume: 1 Issue: 2, 142 - 150, 31.12.2020
https://izlik.org/JA63UN74BM

Abstract

In this paper, we present generalized identities of bivariate Fibonacci polynomials and bivariate Lucas polynomials and related identities consisting even and odd terms. Binet’s formula will employ to obtain the identities. Also we describe and derive sums and connection formulae.

References

  • Altıntaş, İ., & Taşköprü, K., (2019). Unoriented knot polynomials of torus links as Fibonacci-type polynomials. Asian-European Journal of Mathematics, 12(4). https://doi.org/10.1142/S1793557119500530
  • Alves, F.R.V., & Catarino, P.M.M.C., (2016). The Bivariate (Complex) Fibonacci and Lucas Polynomials: An Historical Investigation with the Maple's Help. Acta Didactica Napocensia, 9(4), 71-95.
  • Belbachir, H., & Bencherif, F. (2007). On some properties on bivariate Fibonacci and Lucas polynomials. arXiv:0710.1451v1
  • Cakmak, T., & Karaduman, E., (2018). On the derivatives of bivariate Fibonacci polynomials. Notes On Number Theory and Discrete Mathematics, 24(3), 37-46.
  • Catalani, M., (2004 ‘a’). Some Formulae for Bivariate Fibonacci and Lucas Polynomials. http://front.math.ucdavis.edu/math.CO/0406323
  • Catalani, M., (2004 ‘b’). Identities for Fibonacci and Lucas Polynomials derived from a book of Gould. http://front.math.ucdavis.edu/math.CO/0407105
  • Catalani, M., (2004 ‘c’). Generalized Bivariate Fibonacci Polynomials. Version 2, http://front.math.ucdavis.edu/math.CO/0211366
  • Falcon, S., (2012). On k-Lucas numbers of arithmetic indexes. Applied Mathematics, 3, 1202-1206. http://dx.doi.org/10.4236/am.2012.310175
  • Falcon, S., & Plaza, A., (2009). On k-Fibonacci numbers of arithmetic indexes. Applied Mathematics and Computation, 208, 180–185. doi:10.1016/j.amc.2008.11.031
  • Inoue, K., & Aki, S., (2011). Bivariate Fibonacci polynomials of order k with statistical applications. Annals of the Institute of Statistical Mathematics, 63(1), 197-210.
  • Jacob, G., Reutenauer, C., & Sakarovitch, J. (2006). On a divisibility property of Fibonacci polynomials. http://perso.telecom-paristech.fr/~jsaka/PUB/Files/DPFP.pdf
  • Kaygisiz, K., & Sahin, A., (2011). Determinantal and permanental representation of generalized Bivariate Fibonacci p-polynomials. arXiv:1111.4071v1
  • Panwar, Y. K., & Singh, M., (2014). Generalized bivariate Fibonacci-Like polynomials. International journal of Pure Mathematics, 1, 8-13.
  • Tasci, D., Firengiz, M.C., & Tuglu, N. (2012). Incomplete Bivariate Fibonacci and Lucas 𝑝 –Polynomials. Discrete Dynamics in Nature and Society, vol. 2012, Article ID 840345, 2012. doi:10.1155/2012/840345.
  • Taşköprü, K., & Altıntaş, İ., (2015). HOMFLY polynomials of torus links as generalized Fibonacci polynomials. The electronic journal of combinatorics, 22(4), #P4.8

Year 2020, Volume: 1 Issue: 2, 142 - 150, 31.12.2020
https://izlik.org/JA63UN74BM

Abstract

References

  • Altıntaş, İ., & Taşköprü, K., (2019). Unoriented knot polynomials of torus links as Fibonacci-type polynomials. Asian-European Journal of Mathematics, 12(4). https://doi.org/10.1142/S1793557119500530
  • Alves, F.R.V., & Catarino, P.M.M.C., (2016). The Bivariate (Complex) Fibonacci and Lucas Polynomials: An Historical Investigation with the Maple's Help. Acta Didactica Napocensia, 9(4), 71-95.
  • Belbachir, H., & Bencherif, F. (2007). On some properties on bivariate Fibonacci and Lucas polynomials. arXiv:0710.1451v1
  • Cakmak, T., & Karaduman, E., (2018). On the derivatives of bivariate Fibonacci polynomials. Notes On Number Theory and Discrete Mathematics, 24(3), 37-46.
  • Catalani, M., (2004 ‘a’). Some Formulae for Bivariate Fibonacci and Lucas Polynomials. http://front.math.ucdavis.edu/math.CO/0406323
  • Catalani, M., (2004 ‘b’). Identities for Fibonacci and Lucas Polynomials derived from a book of Gould. http://front.math.ucdavis.edu/math.CO/0407105
  • Catalani, M., (2004 ‘c’). Generalized Bivariate Fibonacci Polynomials. Version 2, http://front.math.ucdavis.edu/math.CO/0211366
  • Falcon, S., (2012). On k-Lucas numbers of arithmetic indexes. Applied Mathematics, 3, 1202-1206. http://dx.doi.org/10.4236/am.2012.310175
  • Falcon, S., & Plaza, A., (2009). On k-Fibonacci numbers of arithmetic indexes. Applied Mathematics and Computation, 208, 180–185. doi:10.1016/j.amc.2008.11.031
  • Inoue, K., & Aki, S., (2011). Bivariate Fibonacci polynomials of order k with statistical applications. Annals of the Institute of Statistical Mathematics, 63(1), 197-210.
  • Jacob, G., Reutenauer, C., & Sakarovitch, J. (2006). On a divisibility property of Fibonacci polynomials. http://perso.telecom-paristech.fr/~jsaka/PUB/Files/DPFP.pdf
  • Kaygisiz, K., & Sahin, A., (2011). Determinantal and permanental representation of generalized Bivariate Fibonacci p-polynomials. arXiv:1111.4071v1
  • Panwar, Y. K., & Singh, M., (2014). Generalized bivariate Fibonacci-Like polynomials. International journal of Pure Mathematics, 1, 8-13.
  • Tasci, D., Firengiz, M.C., & Tuglu, N. (2012). Incomplete Bivariate Fibonacci and Lucas 𝑝 –Polynomials. Discrete Dynamics in Nature and Society, vol. 2012, Article ID 840345, 2012. doi:10.1155/2012/840345.
  • Taşköprü, K., & Altıntaş, İ., (2015). HOMFLY polynomials of torus links as generalized Fibonacci polynomials. The electronic journal of combinatorics, 22(4), #P4.8
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Yashwant Panwar

V. K. Gupta This is me

Jaya Bhandari This is me

Publication Date December 31, 2020
IZ https://izlik.org/JA63UN74BM
Published in Issue Year 2020 Volume: 1 Issue: 2

Cite

APA Panwar, Y., Gupta, V. K., & Bhandari, J. (2020). GENERALIZED IDENTITIES OF BIVARIATE FIBONACCI AND BIVARIATE LUCAS POLYNOMIALS. Journal of Amasya University the Institute of Sciences and Technology, 1(2), 142-150. https://izlik.org/JA63UN74BM
AMA 1.Panwar Y, Gupta VK, Bhandari J. GENERALIZED IDENTITIES OF BIVARIATE FIBONACCI AND BIVARIATE LUCAS POLYNOMIALS. J. Amasya Univ. Inst. Sci. Technol. 2020;1(2):142-150. https://izlik.org/JA63UN74BM
Chicago Panwar, Yashwant, V. K. Gupta, and Jaya Bhandari. 2020. “GENERALIZED IDENTITIES OF BIVARIATE FIBONACCI AND BIVARIATE LUCAS POLYNOMIALS”. Journal of Amasya University the Institute of Sciences and Technology 1 (2): 142-50. https://izlik.org/JA63UN74BM.
EndNote Panwar Y, Gupta VK, Bhandari J (December 1, 2020) GENERALIZED IDENTITIES OF BIVARIATE FIBONACCI AND BIVARIATE LUCAS POLYNOMIALS. Journal of Amasya University the Institute of Sciences and Technology 1 2 142–150.
IEEE [1]Y. Panwar, V. K. Gupta, and J. Bhandari, “GENERALIZED IDENTITIES OF BIVARIATE FIBONACCI AND BIVARIATE LUCAS POLYNOMIALS”, J. Amasya Univ. Inst. Sci. Technol., vol. 1, no. 2, pp. 142–150, Dec. 2020, [Online]. Available: https://izlik.org/JA63UN74BM
ISNAD Panwar, Yashwant - Gupta, V. K. - Bhandari, Jaya. “GENERALIZED IDENTITIES OF BIVARIATE FIBONACCI AND BIVARIATE LUCAS POLYNOMIALS”. Journal of Amasya University the Institute of Sciences and Technology 1/2 (December 1, 2020): 142-150. https://izlik.org/JA63UN74BM.
JAMA 1.Panwar Y, Gupta VK, Bhandari J. GENERALIZED IDENTITIES OF BIVARIATE FIBONACCI AND BIVARIATE LUCAS POLYNOMIALS. J. Amasya Univ. Inst. Sci. Technol. 2020;1:142–150.
MLA Panwar, Yashwant, et al. “GENERALIZED IDENTITIES OF BIVARIATE FIBONACCI AND BIVARIATE LUCAS POLYNOMIALS”. Journal of Amasya University the Institute of Sciences and Technology, vol. 1, no. 2, Dec. 2020, pp. 142-50, https://izlik.org/JA63UN74BM.
Vancouver 1.Panwar Y, Gupta VK, Bhandari J. GENERALIZED IDENTITIES OF BIVARIATE FIBONACCI AND BIVARIATE LUCAS POLYNOMIALS. J. Amasya Univ. Inst. Sci. Technol. [Internet]. 2020 Dec. 1;1(2):142-50. Available from: https://izlik.org/JA63UN74BM