Research Article
BibTex RIS Cite

SOME RESULTS IN SOFT COMPACT FUZZY METRIC SPACES AND ITS APPLICATIONS

Year 2022, Volume: 3 Issue: 2, 1 - 10, 31.12.2022
https://doi.org/10.54559/jauist.1089062

Abstract

In this paper we introduced basic notions of soft sets and examined some important properties of soft metric and soft fuzzy metric spaces. The main object of this research article to establish some coincidence point theorems in soft compact fuzzy metric spaces and its applications.

References

  • [1] Abbas, M., Altun, I., Gopal, D. (2009). Common fixed-point theorems for non-compatible mappings in fuzzy metric spaces, Bull. Math. Anal. Appl., 1(2), 47–56.
  • [2] Ali, M.I., Feng, F., Liu, X., Min, W.K. and Shabir, M. (2005). on some new operations in soft set theory, Comput. Math. Appl.49,1547-1553.
  • [3] Al-Thagafi, M.A., Shahzad, N. (2009). A note on occasionally weakly compatible maps, Int. Journal of Math. Analysis, 3(2), 55–58.
  • [4] Beg, I., Gupta, V., Kanwar, A. (2015). Fixed Point on Intuitionistic Fuzzy Metric Spaces Using E.A. Property, Journal of Nonlinear Functional Analysis, 2015, Article ID 20.
  • [5] Branciari, A. (2002). A fixed-point theorem for mappings satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences, 29, 531 –536.
  • [6] Chen, D. (2005). The parameterization reduction of soft sets and its applications, Comput. Math. Appl. 49 757-763.
  • [7] Das, S., Samanta, S. K. (2012). Soft real sets, soft real numbers and their properties, J. Fuzzy Math. 20 (3) 551-576. [8] Das, S., Samanta, S. K. (2013). Soft metric, Annals of Fuzzy Mathematics and Informatics, 6(1) 77-94.
  • [9] Das, S., Samanta, S. K. (2013). On soft metric spaces, J. Fuzzy Math, 21(3).
  • [10] George, A. and Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems 64, 395–399.
  • [11] Gunduz, C. On Soft Mappings, arXiv: 1305.4545v1 [math.GM], 16 May 2013.
  • [12] Gupta, V., Kanwar, A. (2012). Fixed Point Theorem in Fuzzy Metric Spaces Satisfying E.A Property, Indian Journal of Science and Technology, 5(12) 3767–3769.
  • [13] Hussain, S., Ahmad, B. (2011). Some properties of soft topological spaces, Computers and Math. with Applications, 62, 4058-4067.
  • [14] Kramosil, I., Michalek, J. (1975). Fuzzy metric and statistical spaces. Kybernetica 11, 336–344.
  • [15] Long-Guang, H., Xian, Z. (2007). Cone metric spaces and fixed-point theorems of contractive mappings, J. Math. Anal. Appl. 332,1468-1476.
  • [16] (2002). An application of soft sets in a decision-making problem, Comput. Math. Appl.44, 1077-1083.
  • [17] Maji, P. K., Biswas, R., Roy, A.R. (2003). Soft set theory, Comput. Math. Appl.45 555-562.
  • [18] Majumdar, P. and Samanta, S. K. (2010). On soft mappings, Comput. Math. Appl. 60, 2666-2672.
  • [19] Mishra, S.N., Singh, S.L (1994). Common fixed points of maps in fuzzy metric space, Int. J. Math. Math. Sci., 17(2), 253–258.
  • [20] Molodtsov, D. (1999). Soft set-theory-first results, Comput. Math. Appl.37,19-31.
  • [21] Rhoades, B.E. (1977). A comparison of various definition of contractive mappings, Trans. Amer. Math. Soc. 266 257-290. [22] Saini, R.K., Gupta, V., Singh, S.B., Kumar, M. (2008). Common coincidence Points of R-Weakly Commuting Fuzzy Maps, Thai Journal of Mathematics,6(1), 109–115.
  • [23] Shabir, M., Naz, M. (2011). on soft topological spaces, Comput. Math. Appl.61,1786-1799. [24] Singh, B., Chouhan, M.S. (2000). Common fixed points of compatible maps in fuzzy metric spaces, Fuzzy Sets and Systems, 115(3), 471–475.
  • [25] Singh, B., Jain, S. (2005). Semi-compatibility and fixed-point theorems in fuzzy metric space using implicit relation, Int. J. Math. Math. Sci., 2005(16), 2617–2629.
  • [26] Singh, B., Jain, S. (2005). Weak compatibility and fixed points in fuzzy metric spaces, Ganita, 56(2), 167–176.
  • [27] Som, T. (2007). Some Results on Common fixed point in Fuzzy Metic Spaces, Soochow J. Math., 33(4), 553–561.
  • [28] Subrahmanyam, P.V. (1995). A common fixed-point theorem in fuzzy metric spaces, Information Sciences, 83(3-4), 109-112.
  • [29] Zadeh, L.A. (1965). Fuzzy Sets, Information and control, 8(3), 338–353.
Year 2022, Volume: 3 Issue: 2, 1 - 10, 31.12.2022
https://doi.org/10.54559/jauist.1089062

Abstract

References

  • [1] Abbas, M., Altun, I., Gopal, D. (2009). Common fixed-point theorems for non-compatible mappings in fuzzy metric spaces, Bull. Math. Anal. Appl., 1(2), 47–56.
  • [2] Ali, M.I., Feng, F., Liu, X., Min, W.K. and Shabir, M. (2005). on some new operations in soft set theory, Comput. Math. Appl.49,1547-1553.
  • [3] Al-Thagafi, M.A., Shahzad, N. (2009). A note on occasionally weakly compatible maps, Int. Journal of Math. Analysis, 3(2), 55–58.
  • [4] Beg, I., Gupta, V., Kanwar, A. (2015). Fixed Point on Intuitionistic Fuzzy Metric Spaces Using E.A. Property, Journal of Nonlinear Functional Analysis, 2015, Article ID 20.
  • [5] Branciari, A. (2002). A fixed-point theorem for mappings satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences, 29, 531 –536.
  • [6] Chen, D. (2005). The parameterization reduction of soft sets and its applications, Comput. Math. Appl. 49 757-763.
  • [7] Das, S., Samanta, S. K. (2012). Soft real sets, soft real numbers and their properties, J. Fuzzy Math. 20 (3) 551-576. [8] Das, S., Samanta, S. K. (2013). Soft metric, Annals of Fuzzy Mathematics and Informatics, 6(1) 77-94.
  • [9] Das, S., Samanta, S. K. (2013). On soft metric spaces, J. Fuzzy Math, 21(3).
  • [10] George, A. and Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems 64, 395–399.
  • [11] Gunduz, C. On Soft Mappings, arXiv: 1305.4545v1 [math.GM], 16 May 2013.
  • [12] Gupta, V., Kanwar, A. (2012). Fixed Point Theorem in Fuzzy Metric Spaces Satisfying E.A Property, Indian Journal of Science and Technology, 5(12) 3767–3769.
  • [13] Hussain, S., Ahmad, B. (2011). Some properties of soft topological spaces, Computers and Math. with Applications, 62, 4058-4067.
  • [14] Kramosil, I., Michalek, J. (1975). Fuzzy metric and statistical spaces. Kybernetica 11, 336–344.
  • [15] Long-Guang, H., Xian, Z. (2007). Cone metric spaces and fixed-point theorems of contractive mappings, J. Math. Anal. Appl. 332,1468-1476.
  • [16] (2002). An application of soft sets in a decision-making problem, Comput. Math. Appl.44, 1077-1083.
  • [17] Maji, P. K., Biswas, R., Roy, A.R. (2003). Soft set theory, Comput. Math. Appl.45 555-562.
  • [18] Majumdar, P. and Samanta, S. K. (2010). On soft mappings, Comput. Math. Appl. 60, 2666-2672.
  • [19] Mishra, S.N., Singh, S.L (1994). Common fixed points of maps in fuzzy metric space, Int. J. Math. Math. Sci., 17(2), 253–258.
  • [20] Molodtsov, D. (1999). Soft set-theory-first results, Comput. Math. Appl.37,19-31.
  • [21] Rhoades, B.E. (1977). A comparison of various definition of contractive mappings, Trans. Amer. Math. Soc. 266 257-290. [22] Saini, R.K., Gupta, V., Singh, S.B., Kumar, M. (2008). Common coincidence Points of R-Weakly Commuting Fuzzy Maps, Thai Journal of Mathematics,6(1), 109–115.
  • [23] Shabir, M., Naz, M. (2011). on soft topological spaces, Comput. Math. Appl.61,1786-1799. [24] Singh, B., Chouhan, M.S. (2000). Common fixed points of compatible maps in fuzzy metric spaces, Fuzzy Sets and Systems, 115(3), 471–475.
  • [25] Singh, B., Jain, S. (2005). Semi-compatibility and fixed-point theorems in fuzzy metric space using implicit relation, Int. J. Math. Math. Sci., 2005(16), 2617–2629.
  • [26] Singh, B., Jain, S. (2005). Weak compatibility and fixed points in fuzzy metric spaces, Ganita, 56(2), 167–176.
  • [27] Som, T. (2007). Some Results on Common fixed point in Fuzzy Metic Spaces, Soochow J. Math., 33(4), 553–561.
  • [28] Subrahmanyam, P.V. (1995). A common fixed-point theorem in fuzzy metric spaces, Information Sciences, 83(3-4), 109-112.
  • [29] Zadeh, L.A. (1965). Fuzzy Sets, Information and control, 8(3), 338–353.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Akhlak Mansurı

Vipin Kumar Sharma 0000-0001-9238-6040

Publication Date December 31, 2022
Published in Issue Year 2022 Volume: 3 Issue: 2

Cite

APA Mansurı, A., & Sharma, V. K. (2022). SOME RESULTS IN SOFT COMPACT FUZZY METRIC SPACES AND ITS APPLICATIONS. Journal of Amasya University the Institute of Sciences and Technology, 3(2), 1-10. https://doi.org/10.54559/jauist.1089062
AMA Mansurı A, Sharma VK. SOME RESULTS IN SOFT COMPACT FUZZY METRIC SPACES AND ITS APPLICATIONS. J. Amasya Univ. Inst. Sci. Technol. December 2022;3(2):1-10. doi:10.54559/jauist.1089062
Chicago Mansurı, Akhlak, and Vipin Kumar Sharma. “SOME RESULTS IN SOFT COMPACT FUZZY METRIC SPACES AND ITS APPLICATIONS”. Journal of Amasya University the Institute of Sciences and Technology 3, no. 2 (December 2022): 1-10. https://doi.org/10.54559/jauist.1089062.
EndNote Mansurı A, Sharma VK (December 1, 2022) SOME RESULTS IN SOFT COMPACT FUZZY METRIC SPACES AND ITS APPLICATIONS. Journal of Amasya University the Institute of Sciences and Technology 3 2 1–10.
IEEE A. Mansurı and V. K. Sharma, “SOME RESULTS IN SOFT COMPACT FUZZY METRIC SPACES AND ITS APPLICATIONS”, J. Amasya Univ. Inst. Sci. Technol., vol. 3, no. 2, pp. 1–10, 2022, doi: 10.54559/jauist.1089062.
ISNAD Mansurı, Akhlak - Sharma, Vipin Kumar. “SOME RESULTS IN SOFT COMPACT FUZZY METRIC SPACES AND ITS APPLICATIONS”. Journal of Amasya University the Institute of Sciences and Technology 3/2 (December 2022), 1-10. https://doi.org/10.54559/jauist.1089062.
JAMA Mansurı A, Sharma VK. SOME RESULTS IN SOFT COMPACT FUZZY METRIC SPACES AND ITS APPLICATIONS. J. Amasya Univ. Inst. Sci. Technol. 2022;3:1–10.
MLA Mansurı, Akhlak and Vipin Kumar Sharma. “SOME RESULTS IN SOFT COMPACT FUZZY METRIC SPACES AND ITS APPLICATIONS”. Journal of Amasya University the Institute of Sciences and Technology, vol. 3, no. 2, 2022, pp. 1-10, doi:10.54559/jauist.1089062.
Vancouver Mansurı A, Sharma VK. SOME RESULTS IN SOFT COMPACT FUZZY METRIC SPACES AND ITS APPLICATIONS. J. Amasya Univ. Inst. Sci. Technol. 2022;3(2):1-10.



Scilit 30442                               

Academindex 30443

SOBIAD 30444


29442 As of 2023, JAUIST is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).