Research Article
BibTex RIS Cite

Microglia and its role in neurodegenerative diseases

Year 2019, Volume: 11 Issue: 2, 861 - 873, 23.06.2019
https://doi.org/10.37212/jcnos.683407

Abstract

Microglia are immune cells colonized in the central nervous system (CNS) during the development of the embryo. They make up about 12% of the glial cell population in the brain. These cells play an important role in eliminating the damage that may occur in the CNS or in carrying out normal functions. Microglia cells, which are in morphologically inactive form, are characterized by small cell body, small amounts of cytoplasm and cellular extensions that are released towards the environment. They undergo a significant morphological change and switch to the active form in a pathophysiological condition in the CNS, and they have the ability to migrate to the damaged area by ameboid movement. In today's studies, microglial cells in the active form has been stated to show neuroprotective and neurotoxic effects in neuronal structures in addition to carrying out phagocytosis of metabolic residues in the medium. It has also been mentioned in recent studies that microglial cells located in the CNS have a highly sensitive activation mechanism against inflammation and pathological conditions. Understanding the microglial activation mechanism in neurodegenerative diseases is thought to may contribute to the diagnosis / treatment of neurological diseases as well as being a diagnostic marker for the etiology of the diseases. In this review, the general characteristics and activation mechanism of microglial cells and their functional roles in Alzheimer's, Parkinson's, epilepsy and multiple sclerosis diseases were discussed in the current review.

References

  • Airas L, Dickens AM, Elo P, Marjamaki P, Johansson J, Eskola O, Jones PA, Trigg W, Solin O, Haaparanta-Solin M, Anthony DC, and Rinne J. 2015. In vivo PET imaging demonstrates diminished microglial activation after fingolimod treatment in an animal model of multiple sclerosis. J Nucl Med. 56 (2): 305-310. Airas L, Nylund M, and Rissanen E. 2018. Evaluation of Microglial Activation in Multiple Sclerosis Patients Using Positron Emission Tomography. Front Neurol. 9: 181. Baecher-Allan C, Kaskow BJ, and Weiner HL. 2018. Multiple Sclerosis: Mechanisms and Immunotherapy. Neuron. 97 (4): 742-768. Bast BO, Rickert U, Schneppenheim J, Cossais F, Wilms H, Arnold P, and Lucius R. 2018. Aldosterone exerts anti-inflammatory effects on LPS stimulated microglia. Heliyon. 4 (10): e00826. Bertolotto A, Agresti C, Castello A, Manzardo E, and Riccio A. 2018. 5D4 keratan sulfate epitope identifies a subset of ramified microglia in normal central nervous system parenchyma. J Neuroimmunol. 85 (1): 69-77. Boche D, Perry VH, and Nicoll JA. 2013. Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol. 39 (1): 3-18. Calvello R, Cianciulli A, Nicolardi G, De Nuccio F, Giannotti L, Salvatore R, Porro C, Trotta T, Panaro MA, and Lofrumento DD. 2017. Vitamin D Treatment Attenuates Neuroinflammation and Dopaminergic Neurodegeneration in an Animal Model of Parkinson's Disease, Shifting M1 to M2 Microglia Responses. J Neuroimmune Pharmacol. 12 (2): 327-339. Chen P, Zhao W, Guo Y, Xu J, and Yin M. 2016. CX3CL1/CX3CR1 in Alzheimer's Disease: A Target for Neuroprotection. Biomed Res Int. 2016: 8090918. Choi SR, Howell OW, Carassiti D, Magliozzi R, Gveric D, Muraro PA, Nicholas R, Roncaroli F, and Reynolds R. 2012. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain. 135 (Pt 10): 2925-2937. Choudhury ME, Miyanishi K, Takeda H, Islam A, Matsuoka N, Kubo M, Matsumoto S, Kunieda T, Nomoto M, Yano H, and Tanaka J. 2020. Phagocytic elimination of synapses by microglia during sleep. Glia. 68 (1): 44-59. Clausen BH, Lambertsen KL, Babcock AA, Holm TH, Dagnaes-Hansen F, and Finsen B. 2008. Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation. 5: 46. Colonna M, and Butovsky O. 2017. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu Rev Immunol. 35: 441-468. Correale J, Gaitan MI, Ysrraelit MC, and Fiol MP. 2017. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain140 (3): 527-546. Cui Y, Wang Y, Zhao D, Feng X, Zhang L, and Liu C. 2018. Loganin prevents BV-2 microglia cells from Abeta1-42 -induced inflammation via regulating TLR4/TRAF6/NF-kappaB axis. Cell Biol Int. 42 (12): 1632-1642. Cullheim S, and Thams S. 2007. The microglial networks of the brain and their role in neuronal network plasticity after lesion. Brain Res Rev. 55 (1): 89-96. Dambach H, Hinkerohe D, Prochnow N, Stienen MN, Moinfar Z, Haase CG, Hufnagel A, and Faustmann PM. 2014. Glia and epilepsy: experimental investigation of antiepileptic drugs in an astroglia/microglia co-culture model of inflammation. Epilepsia. 55 (1): 184-192. de Haas AH, Boddeke HW, and Biber K. 2008. Region-specific expression of immunoregulatory proteins on microglia in the healthy CNS. Glia. 56 (8): 888-894. del Rio-Hortega P. Cytology & [and] Cellular Pathology of the Nervous System, 1932; Hoeber. Dheen ST, Kaur C, and Ling EA. 2007 Microglial activation and its implications in the brain diseases. Curr Med Chem. 14 (11): 1189-1197. Di Filippo M, de Iure A, Giampa C, Chiasserini D, Tozzi A, Orvietani PL, Ghiglieri V, Tantucci M, Durante V, Quiroga-Varela A, Mancini A, Costa C, Sarchielli P, Fusco FR, and Calabresi P. 2016. Persistent activation of microglia and NADPH oxidase [corrected] drive hippocampal dysfunction in experimental multiple sclerosis. Sci Rep. 6: 20926. Du L, Zhang Y, Chen Y, Zhu J, Yang Y, and Zhang HL. 2017. Role of Microglia in Neurological Disorders and Their Potentials as a Therapeutic Target. Mol Neurobiol. 54 (10): 7567-7584. Elkabes S, DiCicco-Bloom EM, and Black IB. 1996. Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci. 16 (8): 2508-2521. Fekete C, Vastagh C, Denes A, Hrabovszky E, Nyiri G, Kallo I, Liposits Z, and Sarvari M. 2019. Chronic Amyloid beta Oligomer Infusion Evokes Sustained Inflammation and Microglial Changes in the Rat Hippocampus via NLRP3. Neuroscience. 405: 35-46. Gan P, Zhang L, Chen Y, Zhang Y, Zhang F, Zhou X, Zhang X, Gao B, Zhen X, Zhang J, and Zheng LT. 2015. Anti-inflammatory effects of glaucocalyxin B in microglia cells. J Pharmacol Sci. 128 (1): 35-46. Ghadery C, Koshimori Y, Coakeley S, Harris M, Rusjan P, Kim J, Houle S, and Strafella AP. 2017. Microglial activation in Parkinson's disease using [(18)F]-FEPPA. J Neuroinflammation. 14 (1): 8. Goetz CG. 2011. The history of Parkinson's disease: early clinical descriptions and neurological therapies. Cold Spring Harb Perspect Med. 1 (1): a008862. Gorelenkova Miller O, Behring JB, Siedlak SL, Jiang S, Matsui R, Bachschmid MM, Zhu X, and Mieyal JJ. 2016. Upregulation of Glutaredoxin-1 Activates Microglia and Promotes Neurodegeneration: Implications for Parkinson's Disease. Antioxid Redox Signal. 25 (18): 967-982. Graeber MB, and Streit WJ. 2010. Microglia: biology and pathology. Acta Neuropathol. 119 (1): 89-105. Guerreiro CA. 2016. Epilepsy: Is there hope? Indian J Med Res. 144 (5): 657-660. Haenseler W, Sansom SN, Buchrieser J, Newey SE, Moore CS, Nicholls FJ, Chintawar S, Schnell C, Antel JP, Allen ND, Cader MZ, Wade-Martins R, James WS, and Cowley SA. 2017. A Highly Efficient Human Pluripotent Stem Cell Microglia Model Displays a Neuronal-Co-culture-Specific Expression Profile and Inflammatory Response. Stem Cell Reports. 8 (6): 1727-1742. Hamelin L, Lagarde J, Dorothee G, Leroy C, Labit M, Comley RA, de Souza LC, Corne H, Dauphinot L, Bertoux M, Dubois B, Gervais P, Colliot O, Potier MC, Bottlaender M, Sarazin M, and Clinical It. 2016. Early and protective microglial activation in Alzheimer's disease: a prospective study using 18F-DPA-714 PET imaging. Brain. 139 (Pt 4): 1252-1264. Han CL, Ge M, Liu YP, Zhao XM, Wang KL, Chen N, Meng WJ, Hu W, Zhang JG, Li L, and Meng FG. 2018. LncRNA H19 contributes to hippocampal glial cell activation via JAK/STAT signaling in a rat model of temporal lobe epilepsy. J Neuroinflammation. 15 (1): 103. Hanisch UK, and Kettenmann H. 2007. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 10 (11): 1387-1394. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, and Golenbock DT. 2013. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature. 493 (7434): 674-678. Henn A, Lund S, Hedtjarn M, Schrattenholz A, Porzgen P, and Leist M. 2009. The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX. 26 (2): 83-94. Hess DC, Abe T, Hill WD, Studdard AM, Carothers J, Masuya M, Fleming PA, Drake CJ, and Ogawa M. 2004. Hematopoietic origin of microglial and perivascular cells in brain. Exp Neurol. 186 (2): 134-144. Horvath RJ, Nutile-McMenemy N, Alkaitis MS, and Deleo JA. 2008. Differential migration, LPS-induced cytokine, chemokine, and NO expression in immortalized BV-2 and HAPI cell lines and primary microglial cultures. J Neurochem. 107 (2): 557-569. Hu Y, Zeng Z, Wang B, and Guo S. 2017. Trans-caryophyllene inhibits amyloid beta (Abeta) oligomer-induced neuroinflammation in BV-2 microglial cells. Int Immunopharmacol. 51 91-98. Huang B, Liu J, Ju C, Yang D, Chen G, Xu S, Zeng Y, Yan X, Wang W, Liu D, and Fu S. 2017. Licochalcone A Prevents the Loss of Dopaminergic Neurons by Inhibiting Microglial Activation in Lipopolysaccharide (LPS)-Induced Parkinson's Disease Models. Int J Mol Sci. 18: (10). Hung CT, Chen LD, and Hou CW. 2017. Neuroprotection of a sesamin derivative, 1, 2-bis [(3-methoxyphenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) against ischemic and hypoxic neuronal injury. Iran J Basic Med Sci. 20 (12): 1324-1330. Jackson SJ, Giovannoni G, and Baker D. 2011. Fingolimod modulates microglial activation to augment markers of remyelination. J Neuroinflammation.8 (1): 76. James ML, Belichenko NP, Shuhendler AJ, Hoehne A, Andrews LE, Condon C, Nguyen TV, Reiser V, Jones P, Trigg W, Rao J, Gambhir SS, and Longo FM. 2017. [(18)F]GE-180 PET Detects Reduced Microglia Activation After LM11A-31 Therapy in a Mouse Model of Alzheimer's Disease. Theranostics. 7 (6): 1422-1436. Jing H, Wang S, Wang M, Fu W, Zhang C, and Xu D. 2017. Isobavachalcone Attenuates MPTP-Induced Parkinson's Disease in Mice by Inhibition of Microglial Activation through NF-kappaB Pathway. PLoS One. 12 (1): e0169560. Johnson SL, Park HY, DaSilva NA, Vattem DA, Ma H, and Seeram NP. 2018. Levodopa-Reduced Mucuna pruriens Seed Extract Shows Neuroprotective Effects against Parkinson's Disease in Murine Microglia and Human Neuroblastoma Cells, Caenorhabditis elegans, and Drosophila melanogaster. Nutrients. 10 (9): 1139 Jucaite A, Svenningsson P, Rinne JO, Cselenyi Z, Varnas K, Johnstrom P, Amini N, Kirjavainen A, Helin S, Minkwitz M, Kugler AR, Posener JA, Budd S, Halldin C, Varrone A, and Farde L. 2015. Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson's disease. Brain. 138 (Pt 9): 2687-2700. Kaminska J, Koper OM, Piechal K, and Kemona H. 2017. Multiple sclerosis - etiology and diagnostic potential. Postepy Hig Med Dosw (Online), 71 (0): 551-563. Kettenmann H, Hanisch UK, Noda M, and Verkhratsky A. 2011. Physiology of microglia. Physiol Rev. 91 (2): 461-553. Kettenmann H, Kirchhoff F, and Verkhratsky A. 2013. Microglia: new roles for the synaptic stripper. Neuron. 77 (1): 10-18. Kierdorf K, and Prinz M. 2013. Factors regulating microglia activation. Frontiers in Cellular Neuroscience. 7: 44. Lambert C, Ase AR, Seguela P, and Antel JP. 2010. Distinct migratory and cytokine responses of human microglia and macrophages to ATP. Brain Behav Immun. 24 (8): 1241-1248. Lampron A, Pimentel-Coelho PM, and Rivest S. 2013. Migration of bone marrow-derived cells into the central nervous system in models of neurodegeneration. J Comp Neurol. 521 (17): 3863-3876. Lane CA, Hardy J, and Schott JM. 2018. Alzheimer's disease. Eur J Neurol. 25 (1): 59-70. Lee M, McGeer E, and McGeer PL. 2015. Activated human microglia stimulate neuroblastoma cells to upregulate production of beta amyloid protein and tau: implications for Alzheimer's disease pathogenesis. Neurobiol Aging. 36 (1): 42-52. Loane DJ, Kumar A, Stoica BA, Cabatbat R, and Faden AI. 2014. Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. J Neuropathol Exp Neurol. 73 (1): 14-29. Louboutin JP, and Strayer DS. 2013. Relationship between the chemokine receptor CCR5 and microglia in neurological disorders: consequences of targeting CCR5 on neuroinflammation, neuronal death and regeneration in a model of epilepsy. CNS Neurol Disord Drug Targets. 12 (6): 815-829. Lull ME, and Block ML. 2010. Microglial activation and chronic neurodegeneration. Neurotherapeutics. 7 (4): 354-365. Markovic DS, Vinnakota K, Chirasani S, Synowitz M, Raguet H, Stock K, Sliwa M, Lehmann S, Kalin R, van Rooijen N, Holmbeck K, Heppner FL, Kiwit J, Matyash V, Lehnardt S, Kaminska B, Glass R, and Kettenmann H. 2009. Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci USA.106 (30): 12530-12535. Menassa DA, and Gomez-Nicola D. 2018. Microglial Dynamics During Human Brain Development. Front Immunol. 9: 1014. Minogue AM, Barrett JP, and Lynch MA. 2012. LPS-induced release of IL-6 from glia modulates production of IL-1beta in a JAK2-dependent manner. J Neuroinflammation. 9:126. Nicholas R, and Rashid W. 2013. Multiple sclerosis. Am Fam Physician. 87 (10): 712-714. Nimmerjahn A, Kirchhoff F, and Helmchen F. 2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 308 (5726): 1314-1318. Nissl F. 1899. Über einige Beziehungen zwischen Nervenzellerkrankungen und gliösen Erscheinungen bei verschiedenen Psychosen. Arch Psychiatr. 32: 656-676. Ofengeim D, Mazzitelli S, Ito Y, DeWitt JP, Mifflin L, Zou C, Das S, Adiconis X, Chen H, Zhu H, Kelliher MA, Levin JZ, and Yuan J. 2017. RIPK1 mediates a disease-associated microglial response in Alzheimer's disease. Proc Natl Acad Sci USA. 114 (41): E8788-E8797. Olmos-Alonso A, Schetters ST, Sri S, Askew K, Mancuso R, Vargas-Caballero M, Holscher C, Perry VH, and Gomez-Nicola D. 2016. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer's-like pathology. Brain. 139 (Pt 3): 891-907. Ossenkoppele R, Pijnenburg YA, Perry DC, Cohn-Sheehy BI, Scheltens NM, Vogel JW, Kramer JH, van der Vlies AE, La Joie R, Rosen HJ, van der Flier WM, Grinberg LT, Rozemuller AJ, Huang EJ, van Berckel BN, Miller BL, Barkhof F, Jagust WJ, Scheltens P, Seeley WW, and Rabinovici GD. 2015. The behavioural/dysexecutive variant of Alzheimer's disease: clinical, neuroimaging and pathological features. Brain. 138 (Pt 9): 2732-2749. Papa S, Caron I, Rossi F, and Veglianese P. 2016. Modulators of microglia: a patent review. Expert Opin Ther Pat. 26 (4): 427-437. Parajuli B, Sonobe Y, Kawanokuchi J, Doi Y, Noda M, Takeuchi H, Mizuno T, and Suzumura A. 2012. GM-CSF increases LPS-induced production of proinflammatory mediators via upregulation of TLR4 and CD14 in murine microglia. J Neuroinflammation. 9: 268. Park E, and Chun HS. 2017. Melatonin Attenuates Manganese and Lipopolysaccharide-Induced Inflammatory Activation of BV2 Microglia. Neurochem Res. 42 (2): 656-666. Pascual O, Ben Achour S, Rostaing P, Triller A, and Bessis A. 2012. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci USA. 109 (4): E197-205. Perry VH, and Holmes C. 2014. Microglial priming in neurodegenerative disease. Nat Rev Neurol. 10 (4): 217-224. Perry VH, Hume DA, and Gordon S. 1985. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience. 15 (2): 313-326. Pisanu A, Lecca D, Mulas G, Wardas J, Simbula G, Spiga S, and Carta AR. 2014. Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-gamma agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson's disease. Neurobiol Dis. 71: 280-291. Pocock JM, and Kettenmann H. 2007. Neurotransmitter receptors on microglia. Trends Neurosci. 30 (10): 527-535. Popescu BF, and Lucchinetti CF. 2012. Meningeal and cortical grey matter pathology in multiple sclerosis. BMC Neurol. 12: 11. Priller J, Haas CA, Reddington M, and Kreutzberg GW. 1995. Calcitonin gene-related peptide and ATP induce immediate early gene expression in cultured rat microglial cells. Glia. 15 (4): 447-457. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, and Crews FT. 2007. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 55 (5): 453-462. Quagliato LA, and Nardi AE. 2018. The role of convergent ion channel pathways in microglial phenotypes: a systematic review of the implications for neurological and psychiatric disorders. Transl Psychiatry. 8 (1): 259. Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, and Kreutzberg GW. 1999. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev. 30 (1): 77-105. Ransohoff RM, and Perry VH. 2009. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol. 27: 119-145. Ratchford JN, Endres CJ, Hammoud DA, Pomper MG, Shiee N, McGready J, Pham DL, and Calabresi PA. 2012. Decreased microglial activation in MS patients treated with glatiramer acetate. J Neurol. 259 (6): 1199-1205. Saijo K, Crotti A, and Glass CK. 2013. Regulation of microglia activation and deactivation by nuclear receptors. Glia. 61 (1): 104-111. Sanchez-Guajardo V, Tentillier N, and Romero-Ramos M. 2015. The relation between alpha-synuclein and microglia in Parkinson's disease: Recent developments. Neuroscience. 302: 47-58. Sasaki A. 2017. Microglia and brain macrophages: An update. Neuropathology. 37 (5): 452-464. Schartz ND, Wyatt-Johnson SK, Price LR, Colin SA, and Brewster AL. 2018. Status epilepticus triggers long-lasting activation of complement C1q-C3 signaling in the hippocampus that correlates with seizure frequency in experimental epilepsy. Neurobiol Dis. 109 (Pt A): 163-173. Schmid CD, Melchior B, Masek K, Puntambekar SS, Danielson PE, Lo DD, Sutcliffe JG, and Carson MJ. 2009. Differential gene expression in LPS/IFNgamma activated microglia and macrophages: in vitro versus in vivo. J Neurochem. 109 Suppl 1:117-125. Shi Y, Zhang L, Teng J, and Miao W. 2018. HMGB1 mediates microglia activation via the TLR4/NF-kappaB pathway in coriaria lactone induced epilepsy. Mol Med Rep. 17 (4): 5125-5131. Shimizu E, Kawahara K, Kajizono M, Sawada M, and Nakayama H. 2008. IL-4-induced selective clearance of oligomeric beta-amyloid peptide(1-42) by rat primary type 2 microglia. J Immunol. 181 (9): 6503-6513. Sloka S, Metz LM, Hader W, Starreveld Y, and Yong VW. 2013. Reduction of microglial activity in a model of multiple sclerosis by dipyridamole. J Neuroinflammation. 10: 89. Snoeijen-Schouwenaars FM, van Ool JS, Tan IY, Schelhaas HJ, and Majoie MH. 2017. Evaluation of perampanel in patients with intellectual disability and epilepsy. Epilepsy Behav. 66: 64-67. Staley K. 2015. Molecular mechanisms of epilepsy. Nat Neurosci. 18 (3): 367-372. Stence N, Waite M, and Dailey ME. 2001. Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia. 33 (3): 256-266. Storer PD, Xu J, Chavis JA, and Drew PD. 2005. Cyclopentenone prostaglandins PGA2 and 15-deoxy-delta12,14 PGJ2 suppress activation of murine microglia and astrocytes: implications for multiple sclerosis. J Neurosci Res. 80 (1): 66-74. Streit WJ. 2002. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia. 40 (2): 133-139. Streit WJ, Graeber MB, and Kreutzberg GW. 1988. Functional plasticity of microglia: a review. Glia. 1 (5): 301-307. Streit WJ, and Kincaid-Colton CA. 1995. The brain's immune system. Sci Am. 273 (5): 54-55, 58-61. Suarez-Calvet M, Kleinberger G, Araque Caballero MA, Brendel M, Rominger A, Alcolea D, Fortea J, Lleo A, Blesa R, Gispert JD, Sanchez-Valle R, Antonell A, Rami L, Molinuevo JL, Brosseron F, Traschutz A, Heneka MT, Struyfs H, Engelborghs S, Sleegers K, Van Broeckhoven C, Zetterberg H, Nellgard B, Blennow K, Crispin A, Ewers M, and Haass C. 2016. sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer's disease and associate with neuronal injury markers. EMBO Mol Med. 8 (5): 466-476. Sun W, Suzuki K, Toptunov D, Stoyanov S, Yuzaki M, Khiroug L, and Dityatev A. 2019. In vivo Two-Photon Imaging of Anesthesia-Specific Alterations in Microglial Surveillance and Photodamage-Directed Motility in Mouse Cortex. Front Neurosci. 13: 421. Timmerman R, Burm SM, and Bajramovic JJ. 2018. An Overview of in vitro Methods to Study Microglia. Front Cell Neurosci. 12: 242. Vallez Garcia D, Doorduin J, de Paula Faria D, Dierckx R, and de Vries EFJ. 2017. Effect of Preventive and Curative Fingolimod Treatment Regimens on Microglia Activation and Disease Progression in a Rat Model of Multiple Sclerosis. J Neuroimmune Pharmacol. 12 (3): 521-530. Villani A, and Peri F. 2019. Microglia: Picky Brain Eaters. Dev Cell. 48 (1): 3-4. Virchow R. 1856. Gesammelte Abhandlungen zyr wissenschaftlischen Medizin. Frankfurt, Germany: Verlag von Meidinger Sohn & Comp. 1024. Volterra A, and Meldolesi J. 2005. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci. 6 (8): 626-640. Vowinckel E, Reutens D, Becher B, Verge G, Evans A, Owens T, and Antel JP. 1997. PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurosci Res. 50 (2): 345-353. Wang S, Zhang X, Zhai L, Sheng X, Zheng W, Chu H, and Zhang G. 2018. Atorvastatin Attenuates Cognitive Deficits and Neuroinflammation Induced by Abeta1-42 Involving Modulation of TLR4/TRAF6/NF-kappaB Pathway. J Mol Neurosci. 64 (3): 363-373. Wang XJ, Ye M, Zhang YH, and Chen SD. 2007. CD200-CD200R regulation of microglia activation in the pathogenesis of Parkinson's disease. J Neuroimmune Pharmacol. 2 (3): 259-264. Wang Y, Plastina P, Vincken JP, Jansen R, Balvers M, Ten Klooster JP, Gruppen H, Witkamp R, and Meijerink J. 2017. N-Docosahexaenoyl Dopamine, an Endocannabinoid-like Conjugate of Dopamine and the n-3 Fatty Acid Docosahexaenoic Acid, Attenuates Lipopolysaccharide-Induced Activation of Microglia and Macrophages via COX-2. ACS Chem Neurosci. 8 (3): 548-557. Wu L, Li Y, Yu M, Yang F, Tu M, and Xu H. 2018. Notch Signaling Regulates Microglial Activation and Inflammatory Reactions in a Rat Model of Temporal Lobe Epilepsy. Neurochem Res. 43 (6): 1269-1282. Xu E, Liu J, Liu H, Wang X, and Xiong H. 2018. Inflammasome Activation by Methamphetamine Potentiates Lipopolysaccharide Stimulation of IL-1beta Production in Microglia. J Neuroimmune Pharmacol. 13.2: 237-253 Yan A, Liu Z, Song L, Wang X, Zhang Y, Wu N, Lin J, Liu Y, and Liu Z. Idebenone Alleviates Neuroinflammation and Modulates Microglial Polarization in LPS-Stimulated BV2 Cells and MPTP-Induced Parkinson's Disease Mice. Front Cell Neurosci, 2018; 12 529. Yang X, Lou Y, Liu G, Wang X, Qian Y, Ding J, Chen S, and Xiao Q. 2017. Microglia P2Y6 receptor is related to Parkinson's disease through neuroinflammatory process. J Neuroinflammation. 14 (1): 38. Yeo ETY, Wong KWL, See ML, Wong KY, Gan SY, and Chan EWL. 2018. Piper sarmentosum Roxb. confers neuroprotection on beta-amyloid (Abeta)-induced microglia-mediated neuroinflammation and attenuates tau hyperphosphorylation in SH-SY5Y cells. J Ethnopharmacol. 217: 187-194. Yu Y, and Ye RD. 2015. Microglial Abeta receptors in Alzheimer's disease. Cell Mol Neurobiol. 35 (1): 71-83. Zhang J, Shi XQ, Echeverry S, Mogil JS, De Koninck Y, and Rivest S. 2007. Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J Neurosci. 27 (45): 12396-12406.
Year 2019, Volume: 11 Issue: 2, 861 - 873, 23.06.2019
https://doi.org/10.37212/jcnos.683407

Abstract

References

  • Airas L, Dickens AM, Elo P, Marjamaki P, Johansson J, Eskola O, Jones PA, Trigg W, Solin O, Haaparanta-Solin M, Anthony DC, and Rinne J. 2015. In vivo PET imaging demonstrates diminished microglial activation after fingolimod treatment in an animal model of multiple sclerosis. J Nucl Med. 56 (2): 305-310. Airas L, Nylund M, and Rissanen E. 2018. Evaluation of Microglial Activation in Multiple Sclerosis Patients Using Positron Emission Tomography. Front Neurol. 9: 181. Baecher-Allan C, Kaskow BJ, and Weiner HL. 2018. Multiple Sclerosis: Mechanisms and Immunotherapy. Neuron. 97 (4): 742-768. Bast BO, Rickert U, Schneppenheim J, Cossais F, Wilms H, Arnold P, and Lucius R. 2018. Aldosterone exerts anti-inflammatory effects on LPS stimulated microglia. Heliyon. 4 (10): e00826. Bertolotto A, Agresti C, Castello A, Manzardo E, and Riccio A. 2018. 5D4 keratan sulfate epitope identifies a subset of ramified microglia in normal central nervous system parenchyma. J Neuroimmunol. 85 (1): 69-77. Boche D, Perry VH, and Nicoll JA. 2013. Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol. 39 (1): 3-18. Calvello R, Cianciulli A, Nicolardi G, De Nuccio F, Giannotti L, Salvatore R, Porro C, Trotta T, Panaro MA, and Lofrumento DD. 2017. Vitamin D Treatment Attenuates Neuroinflammation and Dopaminergic Neurodegeneration in an Animal Model of Parkinson's Disease, Shifting M1 to M2 Microglia Responses. J Neuroimmune Pharmacol. 12 (2): 327-339. Chen P, Zhao W, Guo Y, Xu J, and Yin M. 2016. CX3CL1/CX3CR1 in Alzheimer's Disease: A Target for Neuroprotection. Biomed Res Int. 2016: 8090918. Choi SR, Howell OW, Carassiti D, Magliozzi R, Gveric D, Muraro PA, Nicholas R, Roncaroli F, and Reynolds R. 2012. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain. 135 (Pt 10): 2925-2937. Choudhury ME, Miyanishi K, Takeda H, Islam A, Matsuoka N, Kubo M, Matsumoto S, Kunieda T, Nomoto M, Yano H, and Tanaka J. 2020. Phagocytic elimination of synapses by microglia during sleep. Glia. 68 (1): 44-59. Clausen BH, Lambertsen KL, Babcock AA, Holm TH, Dagnaes-Hansen F, and Finsen B. 2008. Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation. 5: 46. Colonna M, and Butovsky O. 2017. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu Rev Immunol. 35: 441-468. Correale J, Gaitan MI, Ysrraelit MC, and Fiol MP. 2017. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain140 (3): 527-546. Cui Y, Wang Y, Zhao D, Feng X, Zhang L, and Liu C. 2018. Loganin prevents BV-2 microglia cells from Abeta1-42 -induced inflammation via regulating TLR4/TRAF6/NF-kappaB axis. Cell Biol Int. 42 (12): 1632-1642. Cullheim S, and Thams S. 2007. The microglial networks of the brain and their role in neuronal network plasticity after lesion. Brain Res Rev. 55 (1): 89-96. Dambach H, Hinkerohe D, Prochnow N, Stienen MN, Moinfar Z, Haase CG, Hufnagel A, and Faustmann PM. 2014. Glia and epilepsy: experimental investigation of antiepileptic drugs in an astroglia/microglia co-culture model of inflammation. Epilepsia. 55 (1): 184-192. de Haas AH, Boddeke HW, and Biber K. 2008. Region-specific expression of immunoregulatory proteins on microglia in the healthy CNS. Glia. 56 (8): 888-894. del Rio-Hortega P. Cytology & [and] Cellular Pathology of the Nervous System, 1932; Hoeber. Dheen ST, Kaur C, and Ling EA. 2007 Microglial activation and its implications in the brain diseases. Curr Med Chem. 14 (11): 1189-1197. Di Filippo M, de Iure A, Giampa C, Chiasserini D, Tozzi A, Orvietani PL, Ghiglieri V, Tantucci M, Durante V, Quiroga-Varela A, Mancini A, Costa C, Sarchielli P, Fusco FR, and Calabresi P. 2016. Persistent activation of microglia and NADPH oxidase [corrected] drive hippocampal dysfunction in experimental multiple sclerosis. Sci Rep. 6: 20926. Du L, Zhang Y, Chen Y, Zhu J, Yang Y, and Zhang HL. 2017. Role of Microglia in Neurological Disorders and Their Potentials as a Therapeutic Target. Mol Neurobiol. 54 (10): 7567-7584. Elkabes S, DiCicco-Bloom EM, and Black IB. 1996. Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci. 16 (8): 2508-2521. Fekete C, Vastagh C, Denes A, Hrabovszky E, Nyiri G, Kallo I, Liposits Z, and Sarvari M. 2019. Chronic Amyloid beta Oligomer Infusion Evokes Sustained Inflammation and Microglial Changes in the Rat Hippocampus via NLRP3. Neuroscience. 405: 35-46. Gan P, Zhang L, Chen Y, Zhang Y, Zhang F, Zhou X, Zhang X, Gao B, Zhen X, Zhang J, and Zheng LT. 2015. Anti-inflammatory effects of glaucocalyxin B in microglia cells. J Pharmacol Sci. 128 (1): 35-46. Ghadery C, Koshimori Y, Coakeley S, Harris M, Rusjan P, Kim J, Houle S, and Strafella AP. 2017. Microglial activation in Parkinson's disease using [(18)F]-FEPPA. J Neuroinflammation. 14 (1): 8. Goetz CG. 2011. The history of Parkinson's disease: early clinical descriptions and neurological therapies. Cold Spring Harb Perspect Med. 1 (1): a008862. Gorelenkova Miller O, Behring JB, Siedlak SL, Jiang S, Matsui R, Bachschmid MM, Zhu X, and Mieyal JJ. 2016. Upregulation of Glutaredoxin-1 Activates Microglia and Promotes Neurodegeneration: Implications for Parkinson's Disease. Antioxid Redox Signal. 25 (18): 967-982. Graeber MB, and Streit WJ. 2010. Microglia: biology and pathology. Acta Neuropathol. 119 (1): 89-105. Guerreiro CA. 2016. Epilepsy: Is there hope? Indian J Med Res. 144 (5): 657-660. Haenseler W, Sansom SN, Buchrieser J, Newey SE, Moore CS, Nicholls FJ, Chintawar S, Schnell C, Antel JP, Allen ND, Cader MZ, Wade-Martins R, James WS, and Cowley SA. 2017. A Highly Efficient Human Pluripotent Stem Cell Microglia Model Displays a Neuronal-Co-culture-Specific Expression Profile and Inflammatory Response. Stem Cell Reports. 8 (6): 1727-1742. Hamelin L, Lagarde J, Dorothee G, Leroy C, Labit M, Comley RA, de Souza LC, Corne H, Dauphinot L, Bertoux M, Dubois B, Gervais P, Colliot O, Potier MC, Bottlaender M, Sarazin M, and Clinical It. 2016. Early and protective microglial activation in Alzheimer's disease: a prospective study using 18F-DPA-714 PET imaging. Brain. 139 (Pt 4): 1252-1264. Han CL, Ge M, Liu YP, Zhao XM, Wang KL, Chen N, Meng WJ, Hu W, Zhang JG, Li L, and Meng FG. 2018. LncRNA H19 contributes to hippocampal glial cell activation via JAK/STAT signaling in a rat model of temporal lobe epilepsy. J Neuroinflammation. 15 (1): 103. Hanisch UK, and Kettenmann H. 2007. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 10 (11): 1387-1394. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, and Golenbock DT. 2013. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature. 493 (7434): 674-678. Henn A, Lund S, Hedtjarn M, Schrattenholz A, Porzgen P, and Leist M. 2009. The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX. 26 (2): 83-94. Hess DC, Abe T, Hill WD, Studdard AM, Carothers J, Masuya M, Fleming PA, Drake CJ, and Ogawa M. 2004. Hematopoietic origin of microglial and perivascular cells in brain. Exp Neurol. 186 (2): 134-144. Horvath RJ, Nutile-McMenemy N, Alkaitis MS, and Deleo JA. 2008. Differential migration, LPS-induced cytokine, chemokine, and NO expression in immortalized BV-2 and HAPI cell lines and primary microglial cultures. J Neurochem. 107 (2): 557-569. Hu Y, Zeng Z, Wang B, and Guo S. 2017. Trans-caryophyllene inhibits amyloid beta (Abeta) oligomer-induced neuroinflammation in BV-2 microglial cells. Int Immunopharmacol. 51 91-98. Huang B, Liu J, Ju C, Yang D, Chen G, Xu S, Zeng Y, Yan X, Wang W, Liu D, and Fu S. 2017. Licochalcone A Prevents the Loss of Dopaminergic Neurons by Inhibiting Microglial Activation in Lipopolysaccharide (LPS)-Induced Parkinson's Disease Models. Int J Mol Sci. 18: (10). Hung CT, Chen LD, and Hou CW. 2017. Neuroprotection of a sesamin derivative, 1, 2-bis [(3-methoxyphenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) against ischemic and hypoxic neuronal injury. Iran J Basic Med Sci. 20 (12): 1324-1330. Jackson SJ, Giovannoni G, and Baker D. 2011. Fingolimod modulates microglial activation to augment markers of remyelination. J Neuroinflammation.8 (1): 76. James ML, Belichenko NP, Shuhendler AJ, Hoehne A, Andrews LE, Condon C, Nguyen TV, Reiser V, Jones P, Trigg W, Rao J, Gambhir SS, and Longo FM. 2017. [(18)F]GE-180 PET Detects Reduced Microglia Activation After LM11A-31 Therapy in a Mouse Model of Alzheimer's Disease. Theranostics. 7 (6): 1422-1436. Jing H, Wang S, Wang M, Fu W, Zhang C, and Xu D. 2017. Isobavachalcone Attenuates MPTP-Induced Parkinson's Disease in Mice by Inhibition of Microglial Activation through NF-kappaB Pathway. PLoS One. 12 (1): e0169560. Johnson SL, Park HY, DaSilva NA, Vattem DA, Ma H, and Seeram NP. 2018. Levodopa-Reduced Mucuna pruriens Seed Extract Shows Neuroprotective Effects against Parkinson's Disease in Murine Microglia and Human Neuroblastoma Cells, Caenorhabditis elegans, and Drosophila melanogaster. Nutrients. 10 (9): 1139 Jucaite A, Svenningsson P, Rinne JO, Cselenyi Z, Varnas K, Johnstrom P, Amini N, Kirjavainen A, Helin S, Minkwitz M, Kugler AR, Posener JA, Budd S, Halldin C, Varrone A, and Farde L. 2015. Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson's disease. Brain. 138 (Pt 9): 2687-2700. Kaminska J, Koper OM, Piechal K, and Kemona H. 2017. Multiple sclerosis - etiology and diagnostic potential. Postepy Hig Med Dosw (Online), 71 (0): 551-563. Kettenmann H, Hanisch UK, Noda M, and Verkhratsky A. 2011. Physiology of microglia. Physiol Rev. 91 (2): 461-553. Kettenmann H, Kirchhoff F, and Verkhratsky A. 2013. Microglia: new roles for the synaptic stripper. Neuron. 77 (1): 10-18. Kierdorf K, and Prinz M. 2013. Factors regulating microglia activation. Frontiers in Cellular Neuroscience. 7: 44. Lambert C, Ase AR, Seguela P, and Antel JP. 2010. Distinct migratory and cytokine responses of human microglia and macrophages to ATP. Brain Behav Immun. 24 (8): 1241-1248. Lampron A, Pimentel-Coelho PM, and Rivest S. 2013. Migration of bone marrow-derived cells into the central nervous system in models of neurodegeneration. J Comp Neurol. 521 (17): 3863-3876. Lane CA, Hardy J, and Schott JM. 2018. Alzheimer's disease. Eur J Neurol. 25 (1): 59-70. Lee M, McGeer E, and McGeer PL. 2015. Activated human microglia stimulate neuroblastoma cells to upregulate production of beta amyloid protein and tau: implications for Alzheimer's disease pathogenesis. Neurobiol Aging. 36 (1): 42-52. Loane DJ, Kumar A, Stoica BA, Cabatbat R, and Faden AI. 2014. Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. J Neuropathol Exp Neurol. 73 (1): 14-29. Louboutin JP, and Strayer DS. 2013. Relationship between the chemokine receptor CCR5 and microglia in neurological disorders: consequences of targeting CCR5 on neuroinflammation, neuronal death and regeneration in a model of epilepsy. CNS Neurol Disord Drug Targets. 12 (6): 815-829. Lull ME, and Block ML. 2010. Microglial activation and chronic neurodegeneration. Neurotherapeutics. 7 (4): 354-365. Markovic DS, Vinnakota K, Chirasani S, Synowitz M, Raguet H, Stock K, Sliwa M, Lehmann S, Kalin R, van Rooijen N, Holmbeck K, Heppner FL, Kiwit J, Matyash V, Lehnardt S, Kaminska B, Glass R, and Kettenmann H. 2009. Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci USA.106 (30): 12530-12535. Menassa DA, and Gomez-Nicola D. 2018. Microglial Dynamics During Human Brain Development. Front Immunol. 9: 1014. Minogue AM, Barrett JP, and Lynch MA. 2012. LPS-induced release of IL-6 from glia modulates production of IL-1beta in a JAK2-dependent manner. J Neuroinflammation. 9:126. Nicholas R, and Rashid W. 2013. Multiple sclerosis. Am Fam Physician. 87 (10): 712-714. Nimmerjahn A, Kirchhoff F, and Helmchen F. 2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 308 (5726): 1314-1318. Nissl F. 1899. Über einige Beziehungen zwischen Nervenzellerkrankungen und gliösen Erscheinungen bei verschiedenen Psychosen. Arch Psychiatr. 32: 656-676. Ofengeim D, Mazzitelli S, Ito Y, DeWitt JP, Mifflin L, Zou C, Das S, Adiconis X, Chen H, Zhu H, Kelliher MA, Levin JZ, and Yuan J. 2017. RIPK1 mediates a disease-associated microglial response in Alzheimer's disease. Proc Natl Acad Sci USA. 114 (41): E8788-E8797. Olmos-Alonso A, Schetters ST, Sri S, Askew K, Mancuso R, Vargas-Caballero M, Holscher C, Perry VH, and Gomez-Nicola D. 2016. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer's-like pathology. Brain. 139 (Pt 3): 891-907. Ossenkoppele R, Pijnenburg YA, Perry DC, Cohn-Sheehy BI, Scheltens NM, Vogel JW, Kramer JH, van der Vlies AE, La Joie R, Rosen HJ, van der Flier WM, Grinberg LT, Rozemuller AJ, Huang EJ, van Berckel BN, Miller BL, Barkhof F, Jagust WJ, Scheltens P, Seeley WW, and Rabinovici GD. 2015. The behavioural/dysexecutive variant of Alzheimer's disease: clinical, neuroimaging and pathological features. Brain. 138 (Pt 9): 2732-2749. Papa S, Caron I, Rossi F, and Veglianese P. 2016. Modulators of microglia: a patent review. Expert Opin Ther Pat. 26 (4): 427-437. Parajuli B, Sonobe Y, Kawanokuchi J, Doi Y, Noda M, Takeuchi H, Mizuno T, and Suzumura A. 2012. GM-CSF increases LPS-induced production of proinflammatory mediators via upregulation of TLR4 and CD14 in murine microglia. J Neuroinflammation. 9: 268. Park E, and Chun HS. 2017. Melatonin Attenuates Manganese and Lipopolysaccharide-Induced Inflammatory Activation of BV2 Microglia. Neurochem Res. 42 (2): 656-666. Pascual O, Ben Achour S, Rostaing P, Triller A, and Bessis A. 2012. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci USA. 109 (4): E197-205. Perry VH, and Holmes C. 2014. Microglial priming in neurodegenerative disease. Nat Rev Neurol. 10 (4): 217-224. Perry VH, Hume DA, and Gordon S. 1985. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience. 15 (2): 313-326. Pisanu A, Lecca D, Mulas G, Wardas J, Simbula G, Spiga S, and Carta AR. 2014. Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-gamma agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson's disease. Neurobiol Dis. 71: 280-291. Pocock JM, and Kettenmann H. 2007. Neurotransmitter receptors on microglia. Trends Neurosci. 30 (10): 527-535. Popescu BF, and Lucchinetti CF. 2012. Meningeal and cortical grey matter pathology in multiple sclerosis. BMC Neurol. 12: 11. Priller J, Haas CA, Reddington M, and Kreutzberg GW. 1995. Calcitonin gene-related peptide and ATP induce immediate early gene expression in cultured rat microglial cells. Glia. 15 (4): 447-457. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, and Crews FT. 2007. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 55 (5): 453-462. Quagliato LA, and Nardi AE. 2018. The role of convergent ion channel pathways in microglial phenotypes: a systematic review of the implications for neurological and psychiatric disorders. Transl Psychiatry. 8 (1): 259. Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, and Kreutzberg GW. 1999. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev. 30 (1): 77-105. Ransohoff RM, and Perry VH. 2009. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol. 27: 119-145. Ratchford JN, Endres CJ, Hammoud DA, Pomper MG, Shiee N, McGready J, Pham DL, and Calabresi PA. 2012. Decreased microglial activation in MS patients treated with glatiramer acetate. J Neurol. 259 (6): 1199-1205. Saijo K, Crotti A, and Glass CK. 2013. Regulation of microglia activation and deactivation by nuclear receptors. Glia. 61 (1): 104-111. Sanchez-Guajardo V, Tentillier N, and Romero-Ramos M. 2015. The relation between alpha-synuclein and microglia in Parkinson's disease: Recent developments. Neuroscience. 302: 47-58. Sasaki A. 2017. Microglia and brain macrophages: An update. Neuropathology. 37 (5): 452-464. Schartz ND, Wyatt-Johnson SK, Price LR, Colin SA, and Brewster AL. 2018. Status epilepticus triggers long-lasting activation of complement C1q-C3 signaling in the hippocampus that correlates with seizure frequency in experimental epilepsy. Neurobiol Dis. 109 (Pt A): 163-173. Schmid CD, Melchior B, Masek K, Puntambekar SS, Danielson PE, Lo DD, Sutcliffe JG, and Carson MJ. 2009. Differential gene expression in LPS/IFNgamma activated microglia and macrophages: in vitro versus in vivo. J Neurochem. 109 Suppl 1:117-125. Shi Y, Zhang L, Teng J, and Miao W. 2018. HMGB1 mediates microglia activation via the TLR4/NF-kappaB pathway in coriaria lactone induced epilepsy. Mol Med Rep. 17 (4): 5125-5131. Shimizu E, Kawahara K, Kajizono M, Sawada M, and Nakayama H. 2008. IL-4-induced selective clearance of oligomeric beta-amyloid peptide(1-42) by rat primary type 2 microglia. J Immunol. 181 (9): 6503-6513. Sloka S, Metz LM, Hader W, Starreveld Y, and Yong VW. 2013. Reduction of microglial activity in a model of multiple sclerosis by dipyridamole. J Neuroinflammation. 10: 89. Snoeijen-Schouwenaars FM, van Ool JS, Tan IY, Schelhaas HJ, and Majoie MH. 2017. Evaluation of perampanel in patients with intellectual disability and epilepsy. Epilepsy Behav. 66: 64-67. Staley K. 2015. Molecular mechanisms of epilepsy. Nat Neurosci. 18 (3): 367-372. Stence N, Waite M, and Dailey ME. 2001. Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia. 33 (3): 256-266. Storer PD, Xu J, Chavis JA, and Drew PD. 2005. Cyclopentenone prostaglandins PGA2 and 15-deoxy-delta12,14 PGJ2 suppress activation of murine microglia and astrocytes: implications for multiple sclerosis. J Neurosci Res. 80 (1): 66-74. Streit WJ. 2002. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia. 40 (2): 133-139. Streit WJ, Graeber MB, and Kreutzberg GW. 1988. Functional plasticity of microglia: a review. Glia. 1 (5): 301-307. Streit WJ, and Kincaid-Colton CA. 1995. The brain's immune system. Sci Am. 273 (5): 54-55, 58-61. Suarez-Calvet M, Kleinberger G, Araque Caballero MA, Brendel M, Rominger A, Alcolea D, Fortea J, Lleo A, Blesa R, Gispert JD, Sanchez-Valle R, Antonell A, Rami L, Molinuevo JL, Brosseron F, Traschutz A, Heneka MT, Struyfs H, Engelborghs S, Sleegers K, Van Broeckhoven C, Zetterberg H, Nellgard B, Blennow K, Crispin A, Ewers M, and Haass C. 2016. sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer's disease and associate with neuronal injury markers. EMBO Mol Med. 8 (5): 466-476. Sun W, Suzuki K, Toptunov D, Stoyanov S, Yuzaki M, Khiroug L, and Dityatev A. 2019. In vivo Two-Photon Imaging of Anesthesia-Specific Alterations in Microglial Surveillance and Photodamage-Directed Motility in Mouse Cortex. Front Neurosci. 13: 421. Timmerman R, Burm SM, and Bajramovic JJ. 2018. An Overview of in vitro Methods to Study Microglia. Front Cell Neurosci. 12: 242. Vallez Garcia D, Doorduin J, de Paula Faria D, Dierckx R, and de Vries EFJ. 2017. Effect of Preventive and Curative Fingolimod Treatment Regimens on Microglia Activation and Disease Progression in a Rat Model of Multiple Sclerosis. J Neuroimmune Pharmacol. 12 (3): 521-530. Villani A, and Peri F. 2019. Microglia: Picky Brain Eaters. Dev Cell. 48 (1): 3-4. Virchow R. 1856. Gesammelte Abhandlungen zyr wissenschaftlischen Medizin. Frankfurt, Germany: Verlag von Meidinger Sohn & Comp. 1024. Volterra A, and Meldolesi J. 2005. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci. 6 (8): 626-640. Vowinckel E, Reutens D, Becher B, Verge G, Evans A, Owens T, and Antel JP. 1997. PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurosci Res. 50 (2): 345-353. Wang S, Zhang X, Zhai L, Sheng X, Zheng W, Chu H, and Zhang G. 2018. Atorvastatin Attenuates Cognitive Deficits and Neuroinflammation Induced by Abeta1-42 Involving Modulation of TLR4/TRAF6/NF-kappaB Pathway. J Mol Neurosci. 64 (3): 363-373. Wang XJ, Ye M, Zhang YH, and Chen SD. 2007. CD200-CD200R regulation of microglia activation in the pathogenesis of Parkinson's disease. J Neuroimmune Pharmacol. 2 (3): 259-264. Wang Y, Plastina P, Vincken JP, Jansen R, Balvers M, Ten Klooster JP, Gruppen H, Witkamp R, and Meijerink J. 2017. N-Docosahexaenoyl Dopamine, an Endocannabinoid-like Conjugate of Dopamine and the n-3 Fatty Acid Docosahexaenoic Acid, Attenuates Lipopolysaccharide-Induced Activation of Microglia and Macrophages via COX-2. ACS Chem Neurosci. 8 (3): 548-557. Wu L, Li Y, Yu M, Yang F, Tu M, and Xu H. 2018. Notch Signaling Regulates Microglial Activation and Inflammatory Reactions in a Rat Model of Temporal Lobe Epilepsy. Neurochem Res. 43 (6): 1269-1282. Xu E, Liu J, Liu H, Wang X, and Xiong H. 2018. Inflammasome Activation by Methamphetamine Potentiates Lipopolysaccharide Stimulation of IL-1beta Production in Microglia. J Neuroimmune Pharmacol. 13.2: 237-253 Yan A, Liu Z, Song L, Wang X, Zhang Y, Wu N, Lin J, Liu Y, and Liu Z. Idebenone Alleviates Neuroinflammation and Modulates Microglial Polarization in LPS-Stimulated BV2 Cells and MPTP-Induced Parkinson's Disease Mice. Front Cell Neurosci, 2018; 12 529. Yang X, Lou Y, Liu G, Wang X, Qian Y, Ding J, Chen S, and Xiao Q. 2017. Microglia P2Y6 receptor is related to Parkinson's disease through neuroinflammatory process. J Neuroinflammation. 14 (1): 38. Yeo ETY, Wong KWL, See ML, Wong KY, Gan SY, and Chan EWL. 2018. Piper sarmentosum Roxb. confers neuroprotection on beta-amyloid (Abeta)-induced microglia-mediated neuroinflammation and attenuates tau hyperphosphorylation in SH-SY5Y cells. J Ethnopharmacol. 217: 187-194. Yu Y, and Ye RD. 2015. Microglial Abeta receptors in Alzheimer's disease. Cell Mol Neurobiol. 35 (1): 71-83. Zhang J, Shi XQ, Echeverry S, Mogil JS, De Koninck Y, and Rivest S. 2007. Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J Neurosci. 27 (45): 12396-12406.
There are 1 citations in total.

Details

Primary Language English
Subjects Neurosciences
Journal Section Original Articles
Authors

Kenan Yıldızhan This is me

Mustafa Nazıroğlu This is me 0000-0003-0887-6974

Publication Date June 23, 2019
Published in Issue Year 2019 Volume: 11 Issue: 2

Cite

APA Yıldızhan, K., & Nazıroğlu, M. (2019). Microglia and its role in neurodegenerative diseases. Journal of Cellular Neuroscience and Oxidative Stress, 11(2), 861-873. https://doi.org/10.37212/jcnos.683407
AMA Yıldızhan K, Nazıroğlu M. Microglia and its role in neurodegenerative diseases. J Cell Neurosci Oxid Stress. June 2019;11(2):861-873. doi:10.37212/jcnos.683407
Chicago Yıldızhan, Kenan, and Mustafa Nazıroğlu. “Microglia and Its Role in Neurodegenerative Diseases”. Journal of Cellular Neuroscience and Oxidative Stress 11, no. 2 (June 2019): 861-73. https://doi.org/10.37212/jcnos.683407.
EndNote Yıldızhan K, Nazıroğlu M (June 1, 2019) Microglia and its role in neurodegenerative diseases. Journal of Cellular Neuroscience and Oxidative Stress 11 2 861–873.
IEEE K. Yıldızhan and M. Nazıroğlu, “Microglia and its role in neurodegenerative diseases”, J Cell Neurosci Oxid Stress, vol. 11, no. 2, pp. 861–873, 2019, doi: 10.37212/jcnos.683407.
ISNAD Yıldızhan, Kenan - Nazıroğlu, Mustafa. “Microglia and Its Role in Neurodegenerative Diseases”. Journal of Cellular Neuroscience and Oxidative Stress 11/2 (June 2019), 861-873. https://doi.org/10.37212/jcnos.683407.
JAMA Yıldızhan K, Nazıroğlu M. Microglia and its role in neurodegenerative diseases. J Cell Neurosci Oxid Stress. 2019;11:861–873.
MLA Yıldızhan, Kenan and Mustafa Nazıroğlu. “Microglia and Its Role in Neurodegenerative Diseases”. Journal of Cellular Neuroscience and Oxidative Stress, vol. 11, no. 2, 2019, pp. 861-73, doi:10.37212/jcnos.683407.
Vancouver Yıldızhan K, Nazıroğlu M. Microglia and its role in neurodegenerative diseases. J Cell Neurosci Oxid Stress. 2019;11(2):861-73.