Research Article
BibTex RIS Cite
Year 2023, Volume: 15 Issue: 1, 1113 - 1121, 01.05.2023

Abstract

References

  • Abdel-Daim MM, Abo El-Ela FI, Alshahrani FK, Bin-Jumah M, Al-Zharani M, Almutairi B, Alyousif MS, Bungau S, Aleya L, Alkahtani S. (2020). Protectiveeffects of thymoquinone againstacrylamide-inducedliver, kidney and brainoxidativedamage in rats. EnvironSciPollutResInt. 27(30):37709-37717.doi: 10.1007/s11356-020-09516-3. Ahmad A, Mishra RK, Vyawahare A, Kumar A, Rehman MU, Qamar W, Khan AQ, Khan R. (2019). Thymoquinone (2-Isoprpyl-5-methyl-1, 4-benzoquinone) as a chemopreventive/anticancer agent: Chemistry and biological effects. Saudi Pharm J. 27(8):1113-1126. doi: 10.1016/j.jsps.2019.09.008.
  • Al-Ali A, Alkhawajah AA, Randhawa MA, Shaikh NA. (2008). Oral and intraperitoneal LD50 of thymoquinone, an active principle of Nigella sativa, in mice and rats. J Ayub Med Coll Abbottabad. 20(2):25-7.
  • Alkis H, Demir E, Taysi MR, Sagir S, Taysi S. (2021). Effects of Nigella sativa oil and thymoquinone on radiation-induced oxidative stress in kidney tissue of rats. Biomed Pharmacother. 139:111540. doi: 10.1016/j.biopha.2021.111540.
  • Almajali B, Al-Jamal HAN, Taib WRW, Ismail I, Johan MF, Doolaanea AA, Ibrahim WN. (2021). Thymoquinone, as a novel therapeutic candidate of cancers. Pharmaceuticals (Basel). 14(4):369. doi: 10.3390/ph14040369.
  • Anonymous1. https://www.ncbi.nlm.nih.gov/gene/2876).
  • Anonymous2. https://www.ncbi.nlm.nih.gov/gene/6647.
  • Anonymous3. https://www.ncbi.nlm.nih.gov/gene/653361.
  • Anonymous4. https://www.ncbi.nlm.nih.gov/gene/836.
  • Anonymous5. https://www.ncbi.nlm.nih.gov/gene/841.
  • Anonymous6. https://www.ncbi.nlm.nih.gov/gene/842.
  • Anonymous7. https://www.ncbi.nlm.nih.gov/gene/581.
  • Anonymous8. https://www.ncbi.nlm.nih.gov/gene/596.
  • Arslan E, Sayin S, Demirbas S, Cakar M, Somak NG, Yesilkaya S, Saglam K. (2013). A case study report of acute renal failure associated with Nigella sativa in a diabetic patient. J Integr Med. 11(1):64-6. doi: 10.3736/jintegrmed2013010.
  • Ayuob N, Balgoon MJ, El-Mansy AA, Mubarak WA, Firgany AEL. (2020). Thymoquinoneupregulates catalase gene expression and preserves the structure of the renal cortex of propylthiouracil-induced hypothyroid rats. Oxid Med Cell Longev. 2020:3295831. doi: 10.1155/2020/3295831.
  • Chae IG, Song NY, Kim DH, Lee MY, Park JM, Chun KS. (2020). Thymoquinone induces apoptosis of human renal carcinoma Caki-1cells by inhibiting JAK2/STAT3 through pro-oxidant effect. Food ChemToxicol. 139:111253. doi: 10.1016/j.fct.2020.111253.
  • Chomczynski P, Mackey K. (1995). Short technical reports. Modification of the TRI reagent procedure for isolation of RNA from polysaccharide- and proteoglycan-rich sources. Biotechniques. 19(6):942-5.
  • Chu SC, Hsieh YS, Yu CC, Lai YY, Chen PN. (2014).Thymoquinone induces cell death in human squamous carcinoma cells via caspase activation-dependent apoptosis and LC3-II activation-dependent autophagy. PLoS One. 9(7):e101579. doi: 10.1371/journal.pone.0101579.
  • Cybulsky AV. (2017). Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol. 13(11):681-696. doi: 10.1038/nrneph.2017.129.
  • Dera A, Rajagopalan P. (2019). Thymoquinone attenuates phosphorylation of AKT to inhibit kidney cancer cell proliferation. J Food Biochem. 43(4):e12793. doi: 10.1111/jfbc.12793.
  • Dera AA, Rajagopalan P, Alfhili MA, Ahmed I, Chandramoorthy HC. (2020). Thymoquinone attenuates oxidative stress of kidney mitochondria and exerts nephroprotective effects in oxonic acid-induced hyperuricemia rats. Biofactors. 46(2):292-300. doi: 10.1002/biof.1590.
  • El-Shemi AG, Kensara OA, Alsaegh A, Mukhtar MH. (2018). Pharmacotherapy with thymoquinone improved pancreatic β-cell integrity and functional activity, enhanced islets revascularization, and alleviated metabolic and hepato-renal disturbances in streptozotocin-induced diabetes in rats. Pharmacology. 2018;101(1-2):9-21. doi: 10.1159/000480018.
  • Guo LP, Liu SX, Yang Q, Liu HY, Xu LL, Hao YH, Zhang XQ. (2020). Effect of thymoquinone on acute kidney injury induced by sepsis in BALB/c mice. Biomed Res Int. 2020:1594726. doi: 10.1155/2020/1594726. Hannan MA, Rahman MA, Sohag AAM, Uddin MJ, Dash R, Sikder MH, Rahman MS, Timalsina B, Munni YA, Sarker PP, Alam M, Mohibbullah M, Haque MN, Jahan I, Hossain MT, Afrin T, Rahman MM, Tahjib-Ul-Arif M, Mitra S, Oktaviani DF, Khan MK, Choi HJ, Moon IS, Kim B. (2021). Black cumin (Nigella sativa L.): A comprehensive review on phytochemistry, health benefits, molecular pharmacology, and safety. Nutrients. 13(6):1784. doi:10.3390/nu13061784.
  • Hannan MA, Zahan MS, Sarker PP, Moni A, Ha H, Uddin MJ. (2021). Protective effects of black cumin (Nigella sativa) and its bioactive constituent, thymoquinone against kidney injury: An aspect on pharmacological insights. Int J Mol Sci.22(16):9078. doi: 10.3390/ijms22169078. Imran M, Rauf A, Khan IA, Shahbaz M, Qaisrani TB, Fatmawati S, Abu-Izneid T, Imran A, Rahman KU, Gondal TA. (2018). Thymoquinone: A novel strategy to combat cancer: A review. Biomed Pharmacother. 106:390-402. doi: 10.1016/j.biopha.2018.06.159.
  • Jalili C, Salahshoor MR, Hoseini M, Roshankhah S, Sohrabi M, Shabanizadeh A. (2017). Protective effect of thymoquinone against morphine injuries to kidneys of mice. Iran J Kidney Dis. 11(2):142-150.
  • Kaleem M, Kirmani D, Asif M, Ahmed Q, Bano B. (2006). Biochemical effects of Nigella sativa L seeds in diabetic rats. Indian J Exp Biol. 44(9):745-8.
  • Kaufmann SH, Earnshaw WC. (2000). Induction of apoptosis by cancer chemotherapy. Exp Cell Res. 256(1):42-9. doi: 10.1006/excr.2000.4838.
  • Kurt E, Dede S, Ragbetli C. (2015). The investigations of total antioxidant status and biochemical serum profile in thymoquinone -treated rats. Afr J Trad Complement Altern Med. 12(2):68-72.doi:10.4314/ajtcam.v12i2.13
  • Kuzay D. (2019). Effects of thymoquinone and citalopram on oxidativestress in gastric and duodenum tissue in reserpinized rats. Erciyes Med J.41(3):295-300.doi: 10.14744/etd.2019.77527.
  • Liou YF, Chen PN, Chu SC, Kao SH, Chang YZ, Hsieh YS, Chang HR. (2019). Thymoquinone suppresses the proliferation of renal cell carcinoma cells via reactive oxygen species-induced apoptosis and reduces cell stemness. Environ Toxicol. 34(11):1208-1220. doi: 10.1002/tox.22822.
  • Livak KJ, Schmittgen TD. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25(4):402-8. doi: 10.1006/meth.2001.1262. Mabrouk A. (2018). Thymoquinone attenuates lead-induced nephropathy in rats. J Biochem Mol Toxicol. e22238. doi: 10.1002/jbt.22238.
  • Mahmoud YK, Abdelrazek HMA. (2019). Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomed Pharmacother. 115:108783. doi: 10.1016/j.biopha.2019.108783. Oskouei Z, Akaberi M, Hosseinzadeh H. (2018). A glance at black cumin (Nigella sativa) and its active constituent, thymoquinone, in ischemia: A review. Iran J Basic Med Sci. 21(12):1200-1209. doi:10.22038/ijbms.2018.31703.7630.
  • Rastad A, Sadeghi A, Chamani M, Shawrang P. (2016). Effects of thymoquinoneoncortisol level, blood antioxidant parameters and capacity in broiler chickens under oxidative stress. KafkasUniv Vet FakDerg. 22(6):903-8.doi:10.9775/kvfd.2016.15618
  • Sener U, Uygur R, Aktas C, Uygur E, Erboga M, Balkas G, Caglar V, Kumral B, Gurel A, Erdogan H. (2016). Protective effects of thymoquinone against apoptosis and oxidative stress by arsenic in rat kidney. Ren Fail. 38(1):117-23. doi: 10.3109/0886022X.2015.1103601.
  • Shaterzadeh-Yazdi H, Noorbakhsh MF, Samarghandian S, Farkhondeh T. (2018). An overview on renoprotective effects of thymoquinone. Kidney Dis (Basel). 4(2):74-82. doi: 10.1159/000486829.
  • Talebi M, Talebi M, Farkhondeh T, Samargh, Ian S. (2021). Biological and therapeutic activities of thymoquinone: Focus on the Nrf2 signalingpathway. PhytoTher Res. 35(4):1739-53. doi.org/10.1002/ptr.6905
  • Yuksek V. (2021). Activation of PI3K/AKT/mTOR pathway thymoquinone-induced in NRK-52E cell line. J InstSci Tech.11(1): 68-74.doi: 10.21597/jist.817666.

The Effect of Thymoquinone on Expression Levels of Apoptotic, Oxidative and Antioxidant Genes in NRK-52E Cells

Year 2023, Volume: 15 Issue: 1, 1113 - 1121, 01.05.2023

Abstract

Thymoquinone (TQ), the activeingredient of Nigella sativa, has manybeneficialeffects, especiallyitsantioxidant and anti-inflammatoryproperties. Thisstudywasplannedtodemonstrate the effects of TQ on apoptotic and oxidativepathways in kidneycells, depending on concentration and time. Forthispurpose, NRK-52E (ATCC® CRL-1571™) ratkidneyepithelialcelllinewasused as material in the study. NRK-52E cellswereproducedbysystematicallypassage of cells in an appropriatemediumunder in vitroconditions. MTT cellviability test wasperformedtodetermine the IC50 value of TQ at 24th and 48th hours. The proliferative (TQp-10µM) and toxic (TQIC50-60µM) concentrationsto be administered in the studyweredetermined. Insamples of theseconcentrationsobtained at 24 and 48 hours, apoptotic CASP3 (caspase 3), CASP8 (caspase 8), CASP9 (caspase 9), BAX (BCL2 associated X), BCL2 (BCL2 apoptosisregulator) and oxidative (GPX1 (glutathioneperoxidase 1)), SOD1 (superoxidedismutase 1), NCF1 (neutrophilcytosolicfactor 1) gene expressionswereperformedby RT-qPCR. The FoldChangewasfoundusing the formula 2^(-delta delta CT). Accordingto the results of this analysis, compared to the control gene, GPX1 at 24 hours at the TQ proliferative concentration was significantly up-regulated at the TQIC50 concentration. It was observed that the oxidative NCF1 gene did not change depending on the concentration at the 24th hour. Apoptotic genes were found to be limited up-regulated at both concentrations at 24 hours. GPX1 was up-regulated (7,215-fold) at the TQp concentration at the 48th hour, while SOD1 was up-regulated (3,623-fold) at the TQIC50 concentration. It was determined that NCF1 gene was significantly up-regulated at high concentration at 48th hour. While apoptotic genes were up-regulated to a limited extent at the TQp concentration at 48th hours, all genes were found to be significantly up-regulated at the TQIC50 concentration. In conclusion, in this thesis study, it was found that GPx was upregulated at the 24th hour and SOD1 was significantly upregulated at the TQIC50 concentration, the NCF gene did not change significantly, the oxidative stress increased at the toxic concentration in the 48th hour, and SOD was used as an antioxidant. It was revealed that the effect of apoptotic pathway in TQ-dependent cell death was limited at the 24th hour, and that cell death at toxic concentration occurred via the external pathway at the 48th hour.

References

  • Abdel-Daim MM, Abo El-Ela FI, Alshahrani FK, Bin-Jumah M, Al-Zharani M, Almutairi B, Alyousif MS, Bungau S, Aleya L, Alkahtani S. (2020). Protectiveeffects of thymoquinone againstacrylamide-inducedliver, kidney and brainoxidativedamage in rats. EnvironSciPollutResInt. 27(30):37709-37717.doi: 10.1007/s11356-020-09516-3. Ahmad A, Mishra RK, Vyawahare A, Kumar A, Rehman MU, Qamar W, Khan AQ, Khan R. (2019). Thymoquinone (2-Isoprpyl-5-methyl-1, 4-benzoquinone) as a chemopreventive/anticancer agent: Chemistry and biological effects. Saudi Pharm J. 27(8):1113-1126. doi: 10.1016/j.jsps.2019.09.008.
  • Al-Ali A, Alkhawajah AA, Randhawa MA, Shaikh NA. (2008). Oral and intraperitoneal LD50 of thymoquinone, an active principle of Nigella sativa, in mice and rats. J Ayub Med Coll Abbottabad. 20(2):25-7.
  • Alkis H, Demir E, Taysi MR, Sagir S, Taysi S. (2021). Effects of Nigella sativa oil and thymoquinone on radiation-induced oxidative stress in kidney tissue of rats. Biomed Pharmacother. 139:111540. doi: 10.1016/j.biopha.2021.111540.
  • Almajali B, Al-Jamal HAN, Taib WRW, Ismail I, Johan MF, Doolaanea AA, Ibrahim WN. (2021). Thymoquinone, as a novel therapeutic candidate of cancers. Pharmaceuticals (Basel). 14(4):369. doi: 10.3390/ph14040369.
  • Anonymous1. https://www.ncbi.nlm.nih.gov/gene/2876).
  • Anonymous2. https://www.ncbi.nlm.nih.gov/gene/6647.
  • Anonymous3. https://www.ncbi.nlm.nih.gov/gene/653361.
  • Anonymous4. https://www.ncbi.nlm.nih.gov/gene/836.
  • Anonymous5. https://www.ncbi.nlm.nih.gov/gene/841.
  • Anonymous6. https://www.ncbi.nlm.nih.gov/gene/842.
  • Anonymous7. https://www.ncbi.nlm.nih.gov/gene/581.
  • Anonymous8. https://www.ncbi.nlm.nih.gov/gene/596.
  • Arslan E, Sayin S, Demirbas S, Cakar M, Somak NG, Yesilkaya S, Saglam K. (2013). A case study report of acute renal failure associated with Nigella sativa in a diabetic patient. J Integr Med. 11(1):64-6. doi: 10.3736/jintegrmed2013010.
  • Ayuob N, Balgoon MJ, El-Mansy AA, Mubarak WA, Firgany AEL. (2020). Thymoquinoneupregulates catalase gene expression and preserves the structure of the renal cortex of propylthiouracil-induced hypothyroid rats. Oxid Med Cell Longev. 2020:3295831. doi: 10.1155/2020/3295831.
  • Chae IG, Song NY, Kim DH, Lee MY, Park JM, Chun KS. (2020). Thymoquinone induces apoptosis of human renal carcinoma Caki-1cells by inhibiting JAK2/STAT3 through pro-oxidant effect. Food ChemToxicol. 139:111253. doi: 10.1016/j.fct.2020.111253.
  • Chomczynski P, Mackey K. (1995). Short technical reports. Modification of the TRI reagent procedure for isolation of RNA from polysaccharide- and proteoglycan-rich sources. Biotechniques. 19(6):942-5.
  • Chu SC, Hsieh YS, Yu CC, Lai YY, Chen PN. (2014).Thymoquinone induces cell death in human squamous carcinoma cells via caspase activation-dependent apoptosis and LC3-II activation-dependent autophagy. PLoS One. 9(7):e101579. doi: 10.1371/journal.pone.0101579.
  • Cybulsky AV. (2017). Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol. 13(11):681-696. doi: 10.1038/nrneph.2017.129.
  • Dera A, Rajagopalan P. (2019). Thymoquinone attenuates phosphorylation of AKT to inhibit kidney cancer cell proliferation. J Food Biochem. 43(4):e12793. doi: 10.1111/jfbc.12793.
  • Dera AA, Rajagopalan P, Alfhili MA, Ahmed I, Chandramoorthy HC. (2020). Thymoquinone attenuates oxidative stress of kidney mitochondria and exerts nephroprotective effects in oxonic acid-induced hyperuricemia rats. Biofactors. 46(2):292-300. doi: 10.1002/biof.1590.
  • El-Shemi AG, Kensara OA, Alsaegh A, Mukhtar MH. (2018). Pharmacotherapy with thymoquinone improved pancreatic β-cell integrity and functional activity, enhanced islets revascularization, and alleviated metabolic and hepato-renal disturbances in streptozotocin-induced diabetes in rats. Pharmacology. 2018;101(1-2):9-21. doi: 10.1159/000480018.
  • Guo LP, Liu SX, Yang Q, Liu HY, Xu LL, Hao YH, Zhang XQ. (2020). Effect of thymoquinone on acute kidney injury induced by sepsis in BALB/c mice. Biomed Res Int. 2020:1594726. doi: 10.1155/2020/1594726. Hannan MA, Rahman MA, Sohag AAM, Uddin MJ, Dash R, Sikder MH, Rahman MS, Timalsina B, Munni YA, Sarker PP, Alam M, Mohibbullah M, Haque MN, Jahan I, Hossain MT, Afrin T, Rahman MM, Tahjib-Ul-Arif M, Mitra S, Oktaviani DF, Khan MK, Choi HJ, Moon IS, Kim B. (2021). Black cumin (Nigella sativa L.): A comprehensive review on phytochemistry, health benefits, molecular pharmacology, and safety. Nutrients. 13(6):1784. doi:10.3390/nu13061784.
  • Hannan MA, Zahan MS, Sarker PP, Moni A, Ha H, Uddin MJ. (2021). Protective effects of black cumin (Nigella sativa) and its bioactive constituent, thymoquinone against kidney injury: An aspect on pharmacological insights. Int J Mol Sci.22(16):9078. doi: 10.3390/ijms22169078. Imran M, Rauf A, Khan IA, Shahbaz M, Qaisrani TB, Fatmawati S, Abu-Izneid T, Imran A, Rahman KU, Gondal TA. (2018). Thymoquinone: A novel strategy to combat cancer: A review. Biomed Pharmacother. 106:390-402. doi: 10.1016/j.biopha.2018.06.159.
  • Jalili C, Salahshoor MR, Hoseini M, Roshankhah S, Sohrabi M, Shabanizadeh A. (2017). Protective effect of thymoquinone against morphine injuries to kidneys of mice. Iran J Kidney Dis. 11(2):142-150.
  • Kaleem M, Kirmani D, Asif M, Ahmed Q, Bano B. (2006). Biochemical effects of Nigella sativa L seeds in diabetic rats. Indian J Exp Biol. 44(9):745-8.
  • Kaufmann SH, Earnshaw WC. (2000). Induction of apoptosis by cancer chemotherapy. Exp Cell Res. 256(1):42-9. doi: 10.1006/excr.2000.4838.
  • Kurt E, Dede S, Ragbetli C. (2015). The investigations of total antioxidant status and biochemical serum profile in thymoquinone -treated rats. Afr J Trad Complement Altern Med. 12(2):68-72.doi:10.4314/ajtcam.v12i2.13
  • Kuzay D. (2019). Effects of thymoquinone and citalopram on oxidativestress in gastric and duodenum tissue in reserpinized rats. Erciyes Med J.41(3):295-300.doi: 10.14744/etd.2019.77527.
  • Liou YF, Chen PN, Chu SC, Kao SH, Chang YZ, Hsieh YS, Chang HR. (2019). Thymoquinone suppresses the proliferation of renal cell carcinoma cells via reactive oxygen species-induced apoptosis and reduces cell stemness. Environ Toxicol. 34(11):1208-1220. doi: 10.1002/tox.22822.
  • Livak KJ, Schmittgen TD. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25(4):402-8. doi: 10.1006/meth.2001.1262. Mabrouk A. (2018). Thymoquinone attenuates lead-induced nephropathy in rats. J Biochem Mol Toxicol. e22238. doi: 10.1002/jbt.22238.
  • Mahmoud YK, Abdelrazek HMA. (2019). Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomed Pharmacother. 115:108783. doi: 10.1016/j.biopha.2019.108783. Oskouei Z, Akaberi M, Hosseinzadeh H. (2018). A glance at black cumin (Nigella sativa) and its active constituent, thymoquinone, in ischemia: A review. Iran J Basic Med Sci. 21(12):1200-1209. doi:10.22038/ijbms.2018.31703.7630.
  • Rastad A, Sadeghi A, Chamani M, Shawrang P. (2016). Effects of thymoquinoneoncortisol level, blood antioxidant parameters and capacity in broiler chickens under oxidative stress. KafkasUniv Vet FakDerg. 22(6):903-8.doi:10.9775/kvfd.2016.15618
  • Sener U, Uygur R, Aktas C, Uygur E, Erboga M, Balkas G, Caglar V, Kumral B, Gurel A, Erdogan H. (2016). Protective effects of thymoquinone against apoptosis and oxidative stress by arsenic in rat kidney. Ren Fail. 38(1):117-23. doi: 10.3109/0886022X.2015.1103601.
  • Shaterzadeh-Yazdi H, Noorbakhsh MF, Samarghandian S, Farkhondeh T. (2018). An overview on renoprotective effects of thymoquinone. Kidney Dis (Basel). 4(2):74-82. doi: 10.1159/000486829.
  • Talebi M, Talebi M, Farkhondeh T, Samargh, Ian S. (2021). Biological and therapeutic activities of thymoquinone: Focus on the Nrf2 signalingpathway. PhytoTher Res. 35(4):1739-53. doi.org/10.1002/ptr.6905
  • Yuksek V. (2021). Activation of PI3K/AKT/mTOR pathway thymoquinone-induced in NRK-52E cell line. J InstSci Tech.11(1): 68-74.doi: 10.21597/jist.817666.
There are 36 citations in total.

Details

Primary Language English
Subjects Toxicology
Journal Section Original Articles
Authors

Rabia Sima Karaman 0000-0003-4431-2404

Semiha Dede 0000-0001-5744-6327

Veysel Yüksek 0000-0001-7432-4989

Publication Date May 1, 2023
Published in Issue Year 2023 Volume: 15 Issue: 1

Cite

APA Karaman, R. S., Dede, S., & Yüksek, V. (2023). The Effect of Thymoquinone on Expression Levels of Apoptotic, Oxidative and Antioxidant Genes in NRK-52E Cells. Journal of Cellular Neuroscience and Oxidative Stress, 15(1), 1113-1121.
AMA Karaman RS, Dede S, Yüksek V. The Effect of Thymoquinone on Expression Levels of Apoptotic, Oxidative and Antioxidant Genes in NRK-52E Cells. J Cell Neurosci Oxid Stress. May 2023;15(1):1113-1121.
Chicago Karaman, Rabia Sima, Semiha Dede, and Veysel Yüksek. “The Effect of Thymoquinone on Expression Levels of Apoptotic, Oxidative and Antioxidant Genes in NRK-52E Cells”. Journal of Cellular Neuroscience and Oxidative Stress 15, no. 1 (May 2023): 1113-21.
EndNote Karaman RS, Dede S, Yüksek V (May 1, 2023) The Effect of Thymoquinone on Expression Levels of Apoptotic, Oxidative and Antioxidant Genes in NRK-52E Cells. Journal of Cellular Neuroscience and Oxidative Stress 15 1 1113–1121.
IEEE R. S. Karaman, S. Dede, and V. Yüksek, “The Effect of Thymoquinone on Expression Levels of Apoptotic, Oxidative and Antioxidant Genes in NRK-52E Cells”, J Cell Neurosci Oxid Stress, vol. 15, no. 1, pp. 1113–1121, 2023.
ISNAD Karaman, Rabia Sima et al. “The Effect of Thymoquinone on Expression Levels of Apoptotic, Oxidative and Antioxidant Genes in NRK-52E Cells”. Journal of Cellular Neuroscience and Oxidative Stress 15/1 (May 2023), 1113-1121.
JAMA Karaman RS, Dede S, Yüksek V. The Effect of Thymoquinone on Expression Levels of Apoptotic, Oxidative and Antioxidant Genes in NRK-52E Cells. J Cell Neurosci Oxid Stress. 2023;15:1113–1121.
MLA Karaman, Rabia Sima et al. “The Effect of Thymoquinone on Expression Levels of Apoptotic, Oxidative and Antioxidant Genes in NRK-52E Cells”. Journal of Cellular Neuroscience and Oxidative Stress, vol. 15, no. 1, 2023, pp. 1113-21.
Vancouver Karaman RS, Dede S, Yüksek V. The Effect of Thymoquinone on Expression Levels of Apoptotic, Oxidative and Antioxidant Genes in NRK-52E Cells. J Cell Neurosci Oxid Stress. 2023;15(1):1113-21.