Research Article
BibTex RIS Cite
Year 2022, , 534 - 542, 31.12.2022
https://doi.org/10.30521/jes.1105215

Abstract

References

  • [1] Fang, YQ, Chen, W, Ao, TH, Liu, C, Wang, L., Gao, XJ, ... & Pan, JW. InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm. Review of Scientific Instruments 2020;, 91(8): 083102. https://doi.org/10.1063/5.0014123
  • [2] Tatsuoka, H, Kuwabara, H, Nakanishi, Y, Fujiyasu, H. Growth of CdTe(111)B homoepitaxial layers by hot-wall epitaxy. J. Appl. Phys. 1991; 69: 6472-6477.
  • [3] Eisaman, MD, Fan, J, Migdall, A, Polyakov, SV. Invited review article: Single-photon sources and detectors. Review of scientific instruments 2011; 82(7): 071101.
  • [4] Rogalski, A. Infrared and Terahertz Detectors. CRC Press., 2019.
  • [5] A. F. Holleman, E. Wiberg and N. Wiberg, W. Holleman, Lehrbuch der Anorganischen Chemie, chap. Die Zinkgruppe, 101 edn. de Gruyter, Berlin – New York, 1995, pp. 1375
  • [6] Toprak, MA. Electronic energy spectrum of GaAs/InxGa1-xAs quantum wells. MSc, Cunhuriyet University, Sivas, Turkiye, 2013.
  • [7] Kish, F, Lal, V, Evans, P, Corzine, SW, Ziari, M, Butrie, T, Welch, D. System-on-chip photonic integrated circuits. IEEE Journal of Selected Topics in Quantum Electronics 2017; 24(1): 1-20.
  • [8] Bimberg, D., Kirstaedter, N., Ledentsov, N. N., Alferov, Z. I., Kop'Ev, P. S., & Ustinov, V. M. (1997). InGaAs-GaAs quantum-dot lasers. IEEE Journal of selected topics in quantum electronics, 3(2), 196-205.
  • [9] Temkin, H., Alavi, K., Wagner, W. R., Pearsall, T. P., & Cho, A. Y. (1983). 1.5–1.6‐μm Ga0. 47In0. 53As/Al0. 48In0. 52As multiquantum well lasers grown by molecular beam epitaxy. Applied physics letters, 42(10), 845-847.
  • [10] Kasymov, SS, Paritskii, G. Device for tracking images. Russian Authors’ Certificate 1973; 1798020: 18-10.
  • [11] Sakiyama, Y, Graves, DB, Chang, HW, Shimizu, T, Morfill, GE. Plasma chemistry model of surface Micro discharge in humid air and dynamics of reactive neutral species. J. Phys. D: Appl. Phys. 2012; 45: 425201
  • [12] Rafatov, I, Bogdanov, EA, Kudryavtsev, AA. On the accuracy and reliability of different fluid models of the direct current glow discharge. Phys.Plasmas 2012; 19(3): 033502.
  • [13] Yu, A, Astrov, A.N. Lodygin, and Portsel, LM, Townsend discharge in nitrogen at low temperatures: enhanced noise and instability due to electrode phenomena. J. Phys. D Appl. Phys.2016; 49: 2016: 095202.
  • [14] Ikhmayies, SJ, Kurt, HH. (Eds.). (2021). Advances in Optoelectronic Materials. Springer International Publishing. https://doi.org/10.1007/978-3-030-57737-7
  • [15] Godyak, V. A. Electron energy distribution function control in gas discharge plasmas. Physics of Plasmas 2013; 20(10): 101611.
  • [16] Kurt, H.H., Tanrıverdi, E.. Electrical properties of ZnS and ZnSe semiconductors in a plasma-semiconductor System. Journal of Electronic Materials 2017; 46(7): 3965-3975
  • [17] Kurt, H.H., Tanrıverdi, E. The Features of GaAs and GaP Semiconductor Cathodes in an Infrared Converter System. Journal of Electronic Materials 2017; 46(7): 4024-4033.
  • [18] Sadiq, Y., Kurt, H.Y., Albarzanji, A.O., Alekperov, S.D., Salamov, BG. Transport properties in semiconductor-gas discharge electronic devices. Solid-state electronics 2010; 53(9): 1009-1015

The features of the InGaAs/InP detectors in plasma converter systems

Year 2022, , 534 - 542, 31.12.2022
https://doi.org/10.30521/jes.1105215

Abstract

The features of the plasma cell with the InGaAs/InP detector are explored. The detector is composed of InGaAs and InP wafers. Mean electron energies, migrative electron flux and current densities are evaluated by theoretical simulation analyses. The results helped to understand the uncertain plasma parameters and made the plasma structure more understandable, thereby, the complex plasma reactions can be solved via the COMSOL package. New plasma studies have focused on uniform discharges. However, the optimization of the plasma structure should be ascertained in order to explain the complex physical and chemical features in the complicated media having different discharge mechanisms. The non-thermal plasmas are famous especially for the microelectronic systems and surface processes such as etching and purification.

References

  • [1] Fang, YQ, Chen, W, Ao, TH, Liu, C, Wang, L., Gao, XJ, ... & Pan, JW. InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm. Review of Scientific Instruments 2020;, 91(8): 083102. https://doi.org/10.1063/5.0014123
  • [2] Tatsuoka, H, Kuwabara, H, Nakanishi, Y, Fujiyasu, H. Growth of CdTe(111)B homoepitaxial layers by hot-wall epitaxy. J. Appl. Phys. 1991; 69: 6472-6477.
  • [3] Eisaman, MD, Fan, J, Migdall, A, Polyakov, SV. Invited review article: Single-photon sources and detectors. Review of scientific instruments 2011; 82(7): 071101.
  • [4] Rogalski, A. Infrared and Terahertz Detectors. CRC Press., 2019.
  • [5] A. F. Holleman, E. Wiberg and N. Wiberg, W. Holleman, Lehrbuch der Anorganischen Chemie, chap. Die Zinkgruppe, 101 edn. de Gruyter, Berlin – New York, 1995, pp. 1375
  • [6] Toprak, MA. Electronic energy spectrum of GaAs/InxGa1-xAs quantum wells. MSc, Cunhuriyet University, Sivas, Turkiye, 2013.
  • [7] Kish, F, Lal, V, Evans, P, Corzine, SW, Ziari, M, Butrie, T, Welch, D. System-on-chip photonic integrated circuits. IEEE Journal of Selected Topics in Quantum Electronics 2017; 24(1): 1-20.
  • [8] Bimberg, D., Kirstaedter, N., Ledentsov, N. N., Alferov, Z. I., Kop'Ev, P. S., & Ustinov, V. M. (1997). InGaAs-GaAs quantum-dot lasers. IEEE Journal of selected topics in quantum electronics, 3(2), 196-205.
  • [9] Temkin, H., Alavi, K., Wagner, W. R., Pearsall, T. P., & Cho, A. Y. (1983). 1.5–1.6‐μm Ga0. 47In0. 53As/Al0. 48In0. 52As multiquantum well lasers grown by molecular beam epitaxy. Applied physics letters, 42(10), 845-847.
  • [10] Kasymov, SS, Paritskii, G. Device for tracking images. Russian Authors’ Certificate 1973; 1798020: 18-10.
  • [11] Sakiyama, Y, Graves, DB, Chang, HW, Shimizu, T, Morfill, GE. Plasma chemistry model of surface Micro discharge in humid air and dynamics of reactive neutral species. J. Phys. D: Appl. Phys. 2012; 45: 425201
  • [12] Rafatov, I, Bogdanov, EA, Kudryavtsev, AA. On the accuracy and reliability of different fluid models of the direct current glow discharge. Phys.Plasmas 2012; 19(3): 033502.
  • [13] Yu, A, Astrov, A.N. Lodygin, and Portsel, LM, Townsend discharge in nitrogen at low temperatures: enhanced noise and instability due to electrode phenomena. J. Phys. D Appl. Phys.2016; 49: 2016: 095202.
  • [14] Ikhmayies, SJ, Kurt, HH. (Eds.). (2021). Advances in Optoelectronic Materials. Springer International Publishing. https://doi.org/10.1007/978-3-030-57737-7
  • [15] Godyak, V. A. Electron energy distribution function control in gas discharge plasmas. Physics of Plasmas 2013; 20(10): 101611.
  • [16] Kurt, H.H., Tanrıverdi, E.. Electrical properties of ZnS and ZnSe semiconductors in a plasma-semiconductor System. Journal of Electronic Materials 2017; 46(7): 3965-3975
  • [17] Kurt, H.H., Tanrıverdi, E. The Features of GaAs and GaP Semiconductor Cathodes in an Infrared Converter System. Journal of Electronic Materials 2017; 46(7): 4024-4033.
  • [18] Sadiq, Y., Kurt, H.Y., Albarzanji, A.O., Alekperov, S.D., Salamov, BG. Transport properties in semiconductor-gas discharge electronic devices. Solid-state electronics 2010; 53(9): 1009-1015
There are 18 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Hilal Kurt 0000-0002-1277-5204

Selçuk Utaş 0000-0002-9709-516X

Publication Date December 31, 2022
Acceptance Date November 1, 2022
Published in Issue Year 2022

Cite

Vancouver Kurt H, Utaş S. The features of the InGaAs/InP detectors in plasma converter systems. Journal of Energy Systems. 2022;6(4):534-42.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Journal of Energy Systems is licensed under CC BY-NC 4.0