Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 2, 172 - 185, 30.06.2025
https://doi.org/10.30521/jes.1518827

Abstract

References

  • [1] Huston, M.A, Marland, G. Carbon management and biodiversity. Journal of environmental Management 2003; 67(1): 77-86, DOI: 10.1016/s0301-4797(02)00190-1
  • [2] Golroudbary, S.R., Makarava, I., Kraslawski, A., Repo, E. Global environmental cost of using rare earth elements in green energy technologies. Science of The Total Environment 2022; 832: 155022. DOI: 10.1016/j.scitotenv.2022.155022
  • [3] Crawford, R.H., Mathur, D., Gerritsen, R. Barriers to improving the environmental performance of construction waste management in remote communities. Procedia engineering 2017; 196: 830-837. DOI: 10.1016/j.proeng.2017.08.014
  • [4] Thai, T., Rajabipour, A., Fairfield, C., Thennadil, S. Hydrogen energy supply to remote communities in Australia’s Northern Territory: A feasibility study. Australian Journal of Multi-Disciplinary Engineering 2022; 18(1): 15-25. DOI: 10.1080/14488388.2021.1946916
  • [5] Mathur, D., Muhammad, I. Stop removing your solar panels early please. It's creating a huge waste problem for Australia. 2021.
  • [6] Mathur, D., Gregory, R., Imran, M. Transitioning towards a circular economy solar energy system in Northern Australia: insights from a multi-level perspective. Australian Planner 2022; 58(3-4): 115-122. DOI: 10.1080/07293682.2023.2200956
  • [7] Melhem, Y. B., Tam V. 100 Climate Conversations – 051|100 Vivian Tam A new recycled concrete. 100 Climate Conversations. 100climateconversations.com/vivian-tam, Accessed August 8, 2023.
  • [8] Mehsas, B, Noui, A, Belagraa, L, Slimani, S. Study of Physico-Mechanical Characteristics of Concrete Made with Recycled Gravel and Prepared Sand. In: Proceedings of the 4th International Symposium on Materials and Sustainable Development: Volume 2: Waste Recycling and Environment 4 2020, Springer International Publishing, pp. 163-174.
  • [9] Morley, J. D., Myers, R. J., Plancherel, Y., Brito-Parada, P. R. A Database for the Extraction, Trade, and Use of Sand and Gravel. Resources 2022; 11(4): 38. DOI: 10.3390/resources11040038
  • [10] Yellishetty M, Mudd G M, Ranjith P G, Tharumarajah A. Environmental life-cycle comparisons of steel production and recycling: sustainability issues, problems and prospects. Environmental science & policy 2011; 14(6): 650-663. DOI: 10.1016/j.envsci.2011.04.008
  • [11] Björkman B, Samuelsson C. Chapter 6 – Recycling of steel. In Handbook of recycling 2014; 65-83. DOI: 10.1016/B978-0-12-396459-5.00006-4
  • [12] Broadbent, C. Steel’s recyclability: demonstrating the benefits of recycling steel to achieve a circular economy. The International Journal of Life Cycle Assessment 2016; 21: 1658-1665. DOI: 10.1007/s11367-016-1081-1
  • [13] Paranhos, R.M.V, Lins, V.F.C, Waldemar, A.A.M., Alvarenga, E.A. Optimisation of electrochemical stripping of galvannealed interstitial free steels. Surface engineering 2011; 27(9): 676-682. DOI: 10.1179/1743294410Y.0000000015
  • [14] Shi, C. Steel slag—its production, processing, characteristics, and cementitious properties. Journal of materials in civil engineering 2004; 16(3): 230-236. DOI: 10.1061/(ASCE)0899-1561(2004)16:3(230)
  • [15] Bicen, Y. Trend adjusted lifetime monitoring of underground power cable. Electric Power Systems Research 2017; 143: 189-196. DOI: 10.1016/j.epsr.2016.10.045
  • [16] Blinová, L., Godovčin, P. Importance of recycling the waste-cables containing copper and PVC. Research Papers Faculty of Materials Science and Technology Slovak University of Technology 2021; 29(48): 1-21. DOI: 10.2478/rput-2021-0001
  • [17] Andersson, L.E, Anaya‐Lara, O., Tande, J.O., Merz, K.O., Imsland, L. Wind farm control‐Part I: A review on control system concepts and structures. IET Renewable Power Generation 2021; 15(10): 2085-2108. DOI: 10.1049/rpg2.12160
  • [18] Alsaleh, A., Sattler, M. Comprehensive life cycle assessment of large wind turbines in the US. Clean Technologies and Environmental Policy 2019; 21: 887-903. DOI: 10.1007/s10098-019-01678-0
  • [19] Jacoby, M. How can companies recycled wind turbine blades? Chemical & Engineering News; 2022;100(27):1–3.
  • [20] Mishnaevsky, Jr. L., Branner, K., Petersen, H.N., Beauson, J., McGugan, M., Sørensen, B.F. Materials for wind turbine blades: An overview. Materials 2017; 10(11): 1285. DOI: 10.3390/ma10111285
  • [21] Paulsen, E.B., Enevoldsen, P. A multidisciplinary rev iew of recycling methods for end-of-life wind turbine blades. Energies 2021; 14(14): 4247. DOI: 10.3390/en14144247
  • [22] Qureshi J. A Review of Recycling Methods for Fibre Reinforced Polymer Composites. Sustainability 2022, 14(24), 16855. DOI : 10.3390/su142416855
  • [23] Khalid, M.Y., Arif, Z.U., Hossain, M., Umer, R. Recycling of wind turbine blade through modern recycling technologies: Road to zero waste. Renewable Energy Focus 2023. DOI: 10.1016/j.ref.2023.02.001
  • [24] Chen, J, Wang, J, Ni, A. Recycling and reuse of composite materials for wind turbine blades: An overview. Journal of Reinforced Plastics and Composites 2019; 38(12): 567-577. DOI: 10.1177/0731684419833470
  • [25] Andersen, P.D., Bonou, A., Beauson, J., Brøndsted, P. Recycling of wind turbines. DTU International Energy Report 2014; 92-7.
  • [26] Banoni, V.A., Arnone, A., Fondeur, M., Hodge, A., Offner, J.P., Phillips, J.K. The place of solar power: an economic analysis of concentrated and distributed solar power. Chemistry Central Journal 2012; 6: 1-11. DOI: 10.1186/1752-153X-6-S1-S6
  • [27] Dominish, E., Florin, N., Teske, S. Responsible Minerals Sourcing for Renewable Energy. In: Earthworks. Institute for Sustainable Futures, University of Technology Sydney 2019.
  • [28] Fthenakis, V.M. Life cycle impact analysis of cadmium in CdTe PV production. Renewable and Sustainable Energy Reviews 2004; 8(4): 303-334. DOI: 10.1016/j.rser.2003.12.001
  • [29] Deng, R., Dias, P., Lunardi, M.M., Ji, J., 2021. Sustainable chemical process to recycle end-of-life solar cells. Green Chemistry, 23(24), pp.10157-10167.
  • [30] Świerczyński, M., Stroe, D., Stan, A.I., Teodorescu, R. The lifetime of the LiFePO 4/C battery energy storage system when used for smoothing of the wind power plant variations. In IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, November 2013: IEEE, pp. 6825-6830). DOI: 10.1109/IECON.2013.6700262
  • [31] Zimmermann, M.V., Zattera, A.J. Recycling and reuse of waste from electricity distribution networks as reinforcement agents in polymeric composites. Waste management 2013; 33(7): 1667-1674. DOI: 10.1016/j.wasman.2013.04.002
  • [32] Shi, J., Xiang, L., Luan, H., Wei, Y., Ren, H., Chen, P. The health concern of polychlorinated biphenyls (PCBs) in a notorious e-waste recycling site. Ecotoxicology and Environmental Safety 2019; 186: 109817. DOI: 10.1016/j.ecoenv.2019.109817
  • [33] Ghosh, D., Khastgir, D. Degradation and stability of polymeric high-voltage insulators and prediction of their service life through environmental and accelerated aging processes. ACS omega 2018; 3(9): 11317-11330. DOI: 10.1021/acsomega.8b01560
  • [34] Sharma K., Polymeric Insulators. Technical Article 2001, 3-28.

Potential for a circular economy for sustainable large-scale renewable energy systems

Year 2025, Volume: 9 Issue: 2, 172 - 185, 30.06.2025
https://doi.org/10.30521/jes.1518827

Abstract

The renewable energy industry has been in rapid progression to reduce carbon emissions to net zero by 2050. In this process, we cannot ignore the inevitable and continual decommissioning of a multitude of generation and transmission systems at their end-of-life, leading to a very large mass of waste being produced. With renewable generator lifespans ranging between 20-30 years, there is a limited period to develop a plan to re-introduce materials from these systems into future projects. This paper aims to discuss the status of our renewable energy market and the material available for re-use. This review relies on company and government reports, published work and other sources to establish the material that exists in our solar and wind farms, battery storage and transmission systems, and future changes expected. Then, we collate the options for recycling and the output of these existing recycling processes to separate and reuse the materials collected. There is a significant overlap in material across the generation and transmission networks which could be introduced into the circular economy through mass processing. At present some of this already have proposed uses, but most still goes to landfill, removing them from the circular process we aim to achieve. This research highlights the difficulty in achieving sustainability aspect of the renewable energy industry and some opportunities for introducing all material into the circular economy. This problem is handled for the energy industry and policy makers as well as encouraging those in recycling to take up this challenge.

References

  • [1] Huston, M.A, Marland, G. Carbon management and biodiversity. Journal of environmental Management 2003; 67(1): 77-86, DOI: 10.1016/s0301-4797(02)00190-1
  • [2] Golroudbary, S.R., Makarava, I., Kraslawski, A., Repo, E. Global environmental cost of using rare earth elements in green energy technologies. Science of The Total Environment 2022; 832: 155022. DOI: 10.1016/j.scitotenv.2022.155022
  • [3] Crawford, R.H., Mathur, D., Gerritsen, R. Barriers to improving the environmental performance of construction waste management in remote communities. Procedia engineering 2017; 196: 830-837. DOI: 10.1016/j.proeng.2017.08.014
  • [4] Thai, T., Rajabipour, A., Fairfield, C., Thennadil, S. Hydrogen energy supply to remote communities in Australia’s Northern Territory: A feasibility study. Australian Journal of Multi-Disciplinary Engineering 2022; 18(1): 15-25. DOI: 10.1080/14488388.2021.1946916
  • [5] Mathur, D., Muhammad, I. Stop removing your solar panels early please. It's creating a huge waste problem for Australia. 2021.
  • [6] Mathur, D., Gregory, R., Imran, M. Transitioning towards a circular economy solar energy system in Northern Australia: insights from a multi-level perspective. Australian Planner 2022; 58(3-4): 115-122. DOI: 10.1080/07293682.2023.2200956
  • [7] Melhem, Y. B., Tam V. 100 Climate Conversations – 051|100 Vivian Tam A new recycled concrete. 100 Climate Conversations. 100climateconversations.com/vivian-tam, Accessed August 8, 2023.
  • [8] Mehsas, B, Noui, A, Belagraa, L, Slimani, S. Study of Physico-Mechanical Characteristics of Concrete Made with Recycled Gravel and Prepared Sand. In: Proceedings of the 4th International Symposium on Materials and Sustainable Development: Volume 2: Waste Recycling and Environment 4 2020, Springer International Publishing, pp. 163-174.
  • [9] Morley, J. D., Myers, R. J., Plancherel, Y., Brito-Parada, P. R. A Database for the Extraction, Trade, and Use of Sand and Gravel. Resources 2022; 11(4): 38. DOI: 10.3390/resources11040038
  • [10] Yellishetty M, Mudd G M, Ranjith P G, Tharumarajah A. Environmental life-cycle comparisons of steel production and recycling: sustainability issues, problems and prospects. Environmental science & policy 2011; 14(6): 650-663. DOI: 10.1016/j.envsci.2011.04.008
  • [11] Björkman B, Samuelsson C. Chapter 6 – Recycling of steel. In Handbook of recycling 2014; 65-83. DOI: 10.1016/B978-0-12-396459-5.00006-4
  • [12] Broadbent, C. Steel’s recyclability: demonstrating the benefits of recycling steel to achieve a circular economy. The International Journal of Life Cycle Assessment 2016; 21: 1658-1665. DOI: 10.1007/s11367-016-1081-1
  • [13] Paranhos, R.M.V, Lins, V.F.C, Waldemar, A.A.M., Alvarenga, E.A. Optimisation of electrochemical stripping of galvannealed interstitial free steels. Surface engineering 2011; 27(9): 676-682. DOI: 10.1179/1743294410Y.0000000015
  • [14] Shi, C. Steel slag—its production, processing, characteristics, and cementitious properties. Journal of materials in civil engineering 2004; 16(3): 230-236. DOI: 10.1061/(ASCE)0899-1561(2004)16:3(230)
  • [15] Bicen, Y. Trend adjusted lifetime monitoring of underground power cable. Electric Power Systems Research 2017; 143: 189-196. DOI: 10.1016/j.epsr.2016.10.045
  • [16] Blinová, L., Godovčin, P. Importance of recycling the waste-cables containing copper and PVC. Research Papers Faculty of Materials Science and Technology Slovak University of Technology 2021; 29(48): 1-21. DOI: 10.2478/rput-2021-0001
  • [17] Andersson, L.E, Anaya‐Lara, O., Tande, J.O., Merz, K.O., Imsland, L. Wind farm control‐Part I: A review on control system concepts and structures. IET Renewable Power Generation 2021; 15(10): 2085-2108. DOI: 10.1049/rpg2.12160
  • [18] Alsaleh, A., Sattler, M. Comprehensive life cycle assessment of large wind turbines in the US. Clean Technologies and Environmental Policy 2019; 21: 887-903. DOI: 10.1007/s10098-019-01678-0
  • [19] Jacoby, M. How can companies recycled wind turbine blades? Chemical & Engineering News; 2022;100(27):1–3.
  • [20] Mishnaevsky, Jr. L., Branner, K., Petersen, H.N., Beauson, J., McGugan, M., Sørensen, B.F. Materials for wind turbine blades: An overview. Materials 2017; 10(11): 1285. DOI: 10.3390/ma10111285
  • [21] Paulsen, E.B., Enevoldsen, P. A multidisciplinary rev iew of recycling methods for end-of-life wind turbine blades. Energies 2021; 14(14): 4247. DOI: 10.3390/en14144247
  • [22] Qureshi J. A Review of Recycling Methods for Fibre Reinforced Polymer Composites. Sustainability 2022, 14(24), 16855. DOI : 10.3390/su142416855
  • [23] Khalid, M.Y., Arif, Z.U., Hossain, M., Umer, R. Recycling of wind turbine blade through modern recycling technologies: Road to zero waste. Renewable Energy Focus 2023. DOI: 10.1016/j.ref.2023.02.001
  • [24] Chen, J, Wang, J, Ni, A. Recycling and reuse of composite materials for wind turbine blades: An overview. Journal of Reinforced Plastics and Composites 2019; 38(12): 567-577. DOI: 10.1177/0731684419833470
  • [25] Andersen, P.D., Bonou, A., Beauson, J., Brøndsted, P. Recycling of wind turbines. DTU International Energy Report 2014; 92-7.
  • [26] Banoni, V.A., Arnone, A., Fondeur, M., Hodge, A., Offner, J.P., Phillips, J.K. The place of solar power: an economic analysis of concentrated and distributed solar power. Chemistry Central Journal 2012; 6: 1-11. DOI: 10.1186/1752-153X-6-S1-S6
  • [27] Dominish, E., Florin, N., Teske, S. Responsible Minerals Sourcing for Renewable Energy. In: Earthworks. Institute for Sustainable Futures, University of Technology Sydney 2019.
  • [28] Fthenakis, V.M. Life cycle impact analysis of cadmium in CdTe PV production. Renewable and Sustainable Energy Reviews 2004; 8(4): 303-334. DOI: 10.1016/j.rser.2003.12.001
  • [29] Deng, R., Dias, P., Lunardi, M.M., Ji, J., 2021. Sustainable chemical process to recycle end-of-life solar cells. Green Chemistry, 23(24), pp.10157-10167.
  • [30] Świerczyński, M., Stroe, D., Stan, A.I., Teodorescu, R. The lifetime of the LiFePO 4/C battery energy storage system when used for smoothing of the wind power plant variations. In IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, November 2013: IEEE, pp. 6825-6830). DOI: 10.1109/IECON.2013.6700262
  • [31] Zimmermann, M.V., Zattera, A.J. Recycling and reuse of waste from electricity distribution networks as reinforcement agents in polymeric composites. Waste management 2013; 33(7): 1667-1674. DOI: 10.1016/j.wasman.2013.04.002
  • [32] Shi, J., Xiang, L., Luan, H., Wei, Y., Ren, H., Chen, P. The health concern of polychlorinated biphenyls (PCBs) in a notorious e-waste recycling site. Ecotoxicology and Environmental Safety 2019; 186: 109817. DOI: 10.1016/j.ecoenv.2019.109817
  • [33] Ghosh, D., Khastgir, D. Degradation and stability of polymeric high-voltage insulators and prediction of their service life through environmental and accelerated aging processes. ACS omega 2018; 3(9): 11317-11330. DOI: 10.1021/acsomega.8b01560
  • [34] Sharma K., Polymeric Insulators. Technical Article 2001, 3-28.
There are 34 citations in total.

Details

Primary Language English
Subjects Renewable Energy Resources
Journal Section Research Article
Authors

Leigh Pham 0009-0004-8661-6187

Cat Kutay This is me 0000-0002-6682-979X

Geoffrey James This is me 0000-0002-1347-0285

Submission Date July 21, 2024
Acceptance Date May 6, 2025
Early Pub Date May 28, 2025
Publication Date June 30, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

Vancouver 1.Pham L, Kutay C, James G. Potential for a circular economy for sustainable large-scale renewable energy systems. Journal of Energy Systems [Internet]. 2025 June 1;9(2):172-85. Available from: https://izlik.org/JA89HL36WY

Journal of Energy Systems is licensed under CC BY-NC 4.0