Research Article
BibTex RIS Cite

Modeling and optimization of a superstrate solar cell based on Cu2ZnSn(SxSe1-x)4/ZnS structure

Year 2017, Volume: 1 Issue: 2, 65 - 74, 08.11.2017
https://doi.org/10.30521/jes.349137

Abstract

The
Kestrite semiconductor material Cu2ZnSnSe4 (CZTSe) is
believed to be a suitable candidate for replacing the CuIn1-xGaxSe2
(CIGS) absorber for the abundance and the non-toxicity of its components.
However, the record efficiency of solar cells based on this material reaches
11% which is lower than the conversion efficiency of the CIGS based solar cell
for which the efficiency has reached 25%. The aim of this study is to model and
optimize the electrical performances of a superstrate type solar cell based on
the kestrite material
Cu2ZnSn(SxSe1-x)4
(CZTSSe). The goal is to investigate the effect of
mixing the sulfide (S) component with selenide
(Se) on the conversion efficiency η, band gap Eg open
circuit voltage Voc, short circuit current density Jsc,
fill factor FF and maximum power density P of the device, through
the evaluation of their behavior as a function of the ratio S/(S+Se),
which represents the concentration of sulfur in the absorber material CZTSSe.
It is also shown in this work, through the calculation of the mismatch strain ε
at the interface between the absorber and the buffer layers, that the zinc
sulfide (ZnS) is a more appropriate buffer than cadmium sulfide (CdS) for the
CZTSSe absorber. The effect of strain at the interface buffer/absorber on the
bandgap energy of CZTSSe and then on the cell performances is evaluated. This
evaluation is based on the strain theory in order to obtain more realistic
results close to experimental results. It is noted that adding 72% of Sulfur in
the absorber material, meaning that x=0.72, increases the efficiency to
13.1% therefore an improvement of 21.3% is obtained compared to the efficiency
of the CZTSe solar cell with a strain equal to 0 meaning no deformation, Jsc=
15.35mA/cm², Voc= 0.800 V, FF = 74.1% and Pmax=9.45mW/cm².

References

  • Alshal, M.A. &Allam, N.K. Broadband Absorption Enhancement in Thin Film Solar Cells Using Asymmetric Double-Sided Pyramid Gratings, J. Electrical Material, 2016; 45: 5685–5694. https://doi.org/10.1007/s11664-016-4735-7
  • Green,M.A., Emery, K., Hishikawa, Y., et al, Solar cell efficiency tables (version 49), Prog. Photovolt. Res. Appl., 2017; 25:3–13.
  • Green, M.A., Emery, K., Hishikawa, Y., et al., Solar cell efficiency tables (version 50), Prog. Photovolt. Res. Appl.,2017; 25(7): 668–676. https://doi.org/10.1002/pip.2909.
  • Walsh, A., Chen, S., Wei, S.-H., Gong, X.-G., Kesterite Thin-Film Solar Cells: Advances in Materials Modellingof Cu2ZnSnS4, Adv. Energy Mater,2012;2(4): 400-409.https://doi.org/10.1002/aenm.201100630.
  • Khoshsirat, N., Yunus, N.A.M., Numerical analysis of In2S3layer thickness, band gap and doping density for effective performance of a CIGS solar cell using SCAPS, J. Electronic Mat., 2016; 45(11): 5721-5727. https://doi.org/10.1007/s11664-016-4744-6.
  • Katagiri, H., Sasaguchi, N., Hando, S., et al., Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of e-b evaporated precursors, Solar Energy Mater. Solar Cells, 1997;49(1–4); 407–414.
  • Wang, W, Winkler. M.T, Gunawan, O, et al., Device characterization of CZTSSe thin-film solar cells with 12.6% efficiency, Adv. Energy Mater., 2014; 4, 1301465.
  • Reported at PVSEC-36 by a research team led at DGIST in South Korea. A 0.181 cm2 solar cell was certified at 13.80% by KIER.
  • Wang, K., Shin, B., Reuter,K.B., et al., Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells, Appl. Phys. Let., 2011; 98(5): 051912.http://dx.doi.org/10.1063/1.3543621
  • Li, J.B., Chawla, V., Clemens, B.M., Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy, Advanced Materials, 2012; 24(6): 720-723.
  • Ericson, T., Scragg, J.J., Hultqvist,A., Zn(O, S) buffer layers and thickness variations of CdS buffer for Cu2ZnSnS4 solar cells, IEEE J. Photovoltaics,2014; 4(1): 465-469.
  • Bodnar, I.V., Telesh, E.V., Gurieva, G., et al., Transmittance spectra of Cu2ZnSnS4 thin films, J. Electronic Mat.,2015; 44(10): 3283–3287.https://doi.org/10.1007/s11664-015-3909-z
  • Katagiri, H., Jimbo, K., Yamada, S., Kamimura, T., et al., Enhanced conversion efficiencies of Cu2ZnSnS4based thin film solar cells by using preferential etching technique, Japan Society Appl. Phys., 2008; 014201.
  • Zeman, M., Thin-film silicon pvtechnology, J. Electrical Engineering, 61(5); 2010: 271–276.
  • Grenet, L., Altamura, G., Kohen, D., Fillon, R., et al., Process for producing a p-n junction in a CZTS-based photovoltaic cell and CZTS-based superstrate photovoltaic cell, 2013; WO 2015015367 A1.
  • Van de Walle, C.G., Band lineups and deformation potentials in the model-solid theory, Phys. Rev. B, 1989; 39:1871-1883.
  • Zhang, Y., Ning, Y., Zhang, L., Zhang, J., et al.,Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs,Optics Express, 2011;19(13): 12569-12581.
  • Kosyachenko, A., Mathew, X., Paulson, P.D., Lytvynenko, V.Ya.,Maslyanchuk, O.L.,Solar Energy Mater. Solar Cells 2014; 130: 291–302.
  • Benmir, A., Aida, M.S., Analytical Modeling and Simulation of CIGS Solar Cells, Energy Procedia, 2013; 36: 618-627. https://doi.org/10.1016/j.egypro.2013.07.071
  • Charles J. Hages, James. Moore, SourabhDongaonkar, Muhammad. Alam, Mark Lundstrom, and Rakesh. Agrawal, Photovoltaic Specialists conference (PVSC), 38th IEEE 2012; pp 2658-2663.
  • Shiyou Chen, Aron Walsh, Ji-Hui Yang, X. G. Gong, Lin Sun, Ping-Xiong Yang, Jun-Hao Chu, and Su-Huai Wei, Compositional, Physical Review B 83, 2011; 125201.
  • HaibingXie,MirjanaDimitrievska, XavierFontané,YudaniaSánchez, Simon López-Marino, VictorIzquierdo-Roca, Verónica, Bermúdez , Alejandro Pérez-Rodríguez, EdgardoSaucedo, baseds , Solar Energy, Materials & Solar Cells,140, 2015; 289–298
  • Feng Jiang, Shigeru Ikeda, Zeguo Tang, Takashi Minemoto, WilmanSeptina, Takashi Harada and Michio Matsumura, Prog. photovolt. Res. Appl. 23, 2015; 1884–1895.
  • Fangyang Liu, Fangqin Zeng, Ning Song, Liangxing Jiang, Zili Han, Zhenghua Su, Chang Yan, Xiaoming Wen, XiaojingHao and Yexiang Liu, ACS Appl. Mater. Interfaces, 2015; 7: 14376−14383
Year 2017, Volume: 1 Issue: 2, 65 - 74, 08.11.2017
https://doi.org/10.30521/jes.349137

Abstract

References

  • Alshal, M.A. &Allam, N.K. Broadband Absorption Enhancement in Thin Film Solar Cells Using Asymmetric Double-Sided Pyramid Gratings, J. Electrical Material, 2016; 45: 5685–5694. https://doi.org/10.1007/s11664-016-4735-7
  • Green,M.A., Emery, K., Hishikawa, Y., et al, Solar cell efficiency tables (version 49), Prog. Photovolt. Res. Appl., 2017; 25:3–13.
  • Green, M.A., Emery, K., Hishikawa, Y., et al., Solar cell efficiency tables (version 50), Prog. Photovolt. Res. Appl.,2017; 25(7): 668–676. https://doi.org/10.1002/pip.2909.
  • Walsh, A., Chen, S., Wei, S.-H., Gong, X.-G., Kesterite Thin-Film Solar Cells: Advances in Materials Modellingof Cu2ZnSnS4, Adv. Energy Mater,2012;2(4): 400-409.https://doi.org/10.1002/aenm.201100630.
  • Khoshsirat, N., Yunus, N.A.M., Numerical analysis of In2S3layer thickness, band gap and doping density for effective performance of a CIGS solar cell using SCAPS, J. Electronic Mat., 2016; 45(11): 5721-5727. https://doi.org/10.1007/s11664-016-4744-6.
  • Katagiri, H., Sasaguchi, N., Hando, S., et al., Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of e-b evaporated precursors, Solar Energy Mater. Solar Cells, 1997;49(1–4); 407–414.
  • Wang, W, Winkler. M.T, Gunawan, O, et al., Device characterization of CZTSSe thin-film solar cells with 12.6% efficiency, Adv. Energy Mater., 2014; 4, 1301465.
  • Reported at PVSEC-36 by a research team led at DGIST in South Korea. A 0.181 cm2 solar cell was certified at 13.80% by KIER.
  • Wang, K., Shin, B., Reuter,K.B., et al., Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells, Appl. Phys. Let., 2011; 98(5): 051912.http://dx.doi.org/10.1063/1.3543621
  • Li, J.B., Chawla, V., Clemens, B.M., Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy, Advanced Materials, 2012; 24(6): 720-723.
  • Ericson, T., Scragg, J.J., Hultqvist,A., Zn(O, S) buffer layers and thickness variations of CdS buffer for Cu2ZnSnS4 solar cells, IEEE J. Photovoltaics,2014; 4(1): 465-469.
  • Bodnar, I.V., Telesh, E.V., Gurieva, G., et al., Transmittance spectra of Cu2ZnSnS4 thin films, J. Electronic Mat.,2015; 44(10): 3283–3287.https://doi.org/10.1007/s11664-015-3909-z
  • Katagiri, H., Jimbo, K., Yamada, S., Kamimura, T., et al., Enhanced conversion efficiencies of Cu2ZnSnS4based thin film solar cells by using preferential etching technique, Japan Society Appl. Phys., 2008; 014201.
  • Zeman, M., Thin-film silicon pvtechnology, J. Electrical Engineering, 61(5); 2010: 271–276.
  • Grenet, L., Altamura, G., Kohen, D., Fillon, R., et al., Process for producing a p-n junction in a CZTS-based photovoltaic cell and CZTS-based superstrate photovoltaic cell, 2013; WO 2015015367 A1.
  • Van de Walle, C.G., Band lineups and deformation potentials in the model-solid theory, Phys. Rev. B, 1989; 39:1871-1883.
  • Zhang, Y., Ning, Y., Zhang, L., Zhang, J., et al.,Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs,Optics Express, 2011;19(13): 12569-12581.
  • Kosyachenko, A., Mathew, X., Paulson, P.D., Lytvynenko, V.Ya.,Maslyanchuk, O.L.,Solar Energy Mater. Solar Cells 2014; 130: 291–302.
  • Benmir, A., Aida, M.S., Analytical Modeling and Simulation of CIGS Solar Cells, Energy Procedia, 2013; 36: 618-627. https://doi.org/10.1016/j.egypro.2013.07.071
  • Charles J. Hages, James. Moore, SourabhDongaonkar, Muhammad. Alam, Mark Lundstrom, and Rakesh. Agrawal, Photovoltaic Specialists conference (PVSC), 38th IEEE 2012; pp 2658-2663.
  • Shiyou Chen, Aron Walsh, Ji-Hui Yang, X. G. Gong, Lin Sun, Ping-Xiong Yang, Jun-Hao Chu, and Su-Huai Wei, Compositional, Physical Review B 83, 2011; 125201.
  • HaibingXie,MirjanaDimitrievska, XavierFontané,YudaniaSánchez, Simon López-Marino, VictorIzquierdo-Roca, Verónica, Bermúdez , Alejandro Pérez-Rodríguez, EdgardoSaucedo, baseds , Solar Energy, Materials & Solar Cells,140, 2015; 289–298
  • Feng Jiang, Shigeru Ikeda, Zeguo Tang, Takashi Minemoto, WilmanSeptina, Takashi Harada and Michio Matsumura, Prog. photovolt. Res. Appl. 23, 2015; 1884–1895.
  • Fangyang Liu, Fangqin Zeng, Ning Song, Liangxing Jiang, Zili Han, Zhenghua Su, Chang Yan, Xiaoming Wen, XiaojingHao and Yexiang Liu, ACS Appl. Mater. Interfaces, 2015; 7: 14376−14383
There are 24 citations in total.

Details

Journal Section Research Articles
Authors

Abdelkader Aissat

Hahet Arbouz This is me

Jean Pierre Vilcot This is me

Publication Date November 8, 2017
Acceptance Date November 6, 2017
Published in Issue Year 2017 Volume: 1 Issue: 2

Cite

Vancouver Aissat A, Arbouz H, Vilcot JP. Modeling and optimization of a superstrate solar cell based on Cu2ZnSn(SxSe1-x)4/ZnS structure. Journal of Energy Systems. 2017;1(2):65-74.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Journal of Energy Systems is licensed under CC BY-NC 4.0