Research Article
BibTex RIS Cite
Year 2019, Volume: 3 Issue: 4, 129 - 138, 31.12.2019
https://doi.org/10.30521/jes.614212

Abstract

References

  • Sanz-Andrés A, Pindado S, and Sorribes F. Mathematical analysis of the effect of the rotor geometry on cup anemometer response. Sci. World J. 2014, 1-23
  • Robinson T R. On a New Anemometer, Proc. R. Irish Acad. 1847, 4(1836-1869), 566-572
  • Robinson T R. On the Determination of the Constants of the Cup Anemometer by Experiments with a Whirling Machine. Philos. Trans. R. Soc. London 1878, 169, 777-822
  • Robinson T R. On the Determination of the Constants of the Cup Anemometer by Experiments with a Whirling Machine. Proc. R. Soc. 1878, 27, 286-9
  • Robinson T R. On the Constants of the Cup Anemometer. Proc. R. Soc. London. 1880, 30, 572-574
  • Robinson T R. On the Determination of the Constants of the Cup Anemometer by Experiments with a Whirling Machine. Part II Philos. Trans. R. Soc. London. 1880, 171, 1055-1070
  • Chree C. Contribution to the Theory of the Robinson Cup- Anemometer London, Edinburgh Dublin Philos. Mag. J. Sci. 1895, 40, 63-90
  • Marvin C F. Anemometer Tests. Mon. Weather Rev. 1900, 58-63
  • Brazier, M.C.-E. Sur la variation des indications des anémomètres Robinson et Richard en fonction de l’inclinaison du vent. C. R. Séances Acad. Sci. 1920, 170, 610–612
  • Brazier M C-E. Sur la comparabilité des anémomètres. Comptes Rendus des Séances l’Académie des Sci. 1921, 172, 843-5
  • Brazier M C-E. On the Comparability of Anemometers. Mon. Weather Rev. 1921,49, 575-575
  • Patterson J. The cup anemometer. Trans. R. Soc. Canada Ser. 1926, III 20, 1-54
  • Schrenk O Über die Trägheitsfehler des Schalenkreuz-Anemometers bei schwankender. Windstärke Zeitschrift fur Tech. Phys. 1929, 10, 57-66
  • Sheppard P A. Anemometry: a critical and historical survey. Proc. Phys. Soc. 1941, 53, 361-90
  • Fergusson, S.P. Harvard Meteorological Studies No. 4. Experimental Studies of Cup Anemometers; Harvard University Press: Cambridge, MA, USA, 1939.
  • Brevoort, M.J.; Joyner, U.T. Experimental Investigation of the Robinson-Type Cup Anemometer; NACA TN-513; Government Printing Office: Washington, DC, USA, 1935.
  • Marvin, C.F. Recent Advances in Anemometry. Mon. Weather Rev. 1934, 62, 115–120
  • Hubbard J, Brescoll G. Aerodynamic investigation of a cup anemometer. NACA TN-502, 1934.
  • Sanuki M. Experiments of the Start and Stop of Windmill and Cup Anemometers with Particular Reference to their Over-Estimation Factors. Pap. Meteorol. Geophys. 1952, 3, 41-53
  • Sanuki M and Kimura S. Some Aerodynamic Aspects Deduced from the Start and Stop Experiment of Three- and Four-cup Anemometer. Pap. Meteorol. Geophys. 1954, 5, 695-698
  • Ramachandran S. A theoretical study of cup and vane anemometers. Q. J. R. Meteorol. Soc. 1969, 95, 163-180
  • Ramachandran S. A theoretical study of cup and vane anemometers. Part II Q. J. R. Meteorol. Soc. 1969, 1996, 115-23
  • Scrase F, Sheppard P. The errors of cup anemometers in fluctuating winds. J. Sci. Instrum. 1944, 21, 160-161
  • Deacon E L. The over-estimation error of cup anemometers in fluctuating winds. J. Sci. Instrum. 1951, 28, 231-234
  • MacCready Jr. P B. Mean wind speed measurements in turbulence. J. Appl. Meteorol. 1966, 5, 219-25
  • Kondo J, Naito G I and Fujinawa Y. Response of Cup Anemometer in Turbulence. J. Meteorol. Soc. Japan. 1971, 49, 63-74
  • Lindley D and Bowen A J. The response of cup and propeller anemometers to fluctuating wind speeds. 5th Australasian Conference on Hydraulics and Fluid Mechanics, 1974, 1, 269-277
  • Wyngaard J C, Bauman J T and Lynch R A. Cup anemometer dynamics Flow Its Meas. Control Sci. Ind. 1974, 1, 701-708
  • Busch N E and Kristensen L. Cup anemometer overspeeding. J. Appl. Meteorol. 1976, 15, 1328-1332
  • International Electrotechnical Commission. International Standard IEC-61400-1. Wind Turbines. Part 1: Design requirements, 2005
  • International Electrotechnical Commission. International Standard IEC-61400-12-1. Wind Turbines. Part 12-1: Power performance measurements of electricity producing wind turbines. First edition, 2005-12
  • MEASNET. Cup Anemometer Calibration Procedure, Version 2 (October 2009); MEASNET: Madrid, Spain, 2009.
  • MEASNET. Cup anemometer calibration procedure, Version 1 (September 1997, updated 24/11/2008) MEASNET: Madrid, Spain, 1997
  • Bégin-Drolet A, Lemay J and Ruel J. Time domain modeling of cup anemometers using artificial neural networks Flow Meas. Instrum. 2013, 33, 10-27
  • Torochkov V Y and Surazhskiy D Y. Measuring average wind speed (No. FTD-HT-23-341-69). Foreign Technol. Div. Wright-Patterson AFB OH. 1969
  • Hayashi T. Dynamic response of a cup anemometer. J. Atmos. Ocean. Technol. 1987, 4, 281-287
  • Hristov T S, Miller S D and Friehe C A. Linear time-invariant compensation of cup anemometer and vane inertia. Boundary-layer Meteorol. 2000, 97, 293-307
  • Solov’ev Y P, Korovushkin A I and Toloknov Y N. Characteristics of a cup anemometer and a procedure of measuring the wind velocity. Phys. Oceanogr. 2004, 14, 173-186
  • Selyaninov M G. Dynamic Error of Rotating Flow-Rate Transducer. Meas. Tech. 2004, 47, 571-577
  • Yahaya, S. and Frangi, J. P. Cup anemometer response to the wind turbulence-measurement of the horizontal wind variance, Ann. Geophys., 2004, 22, 3363-3374, https://doi.org/10.5194/angeo-22-3363-2004.
  • Potsdam M, Cicolani L, Gassaway B and Mattle D. Aerodynamic Analysis and Flight Simulation of an Anemometer for Rotational Stabilization of a Helicopter Slung Load. Proceedings of the 31st AIAA Applied Aerodynamics Conference (San Diego, CA, USA). 2013, 1-22
  • Ramos Cenzano, A. Análisis Mediante Cálculo Numérico (CFD) del Comportamiento de Anemómetros de Cazoletas; Universidad Politécnica de Madrid: Madrid, Spain, 2014
  • Paschen M and Laurat S. Precision of Cup Anemometers - A Numerical Study. Eur. Int. J. Sci. Technol. 2014, 3, 39-45
  • Yuan K, Xu J, Wei W and Qi Y. Research on Numerical Simulation of the Aerodynamic Characteristics of the Three-Cup Anemometer Based on CFD. Int. Core J. Eng. 2016, 2, 28-33
  • Beltrán J, Llombart A and Guerrero J. Detection of nacelle anemometers faults in a wind farm Proceedings of International Conference on Renewable Energies and Power Quality. ICREPQ 2009 (15-17 April, Valencia, Spain). 2009, 1-6
  • Beltrán J, Llombart A and Guerrero J. A bin method with data range selection for detection of nacelle anemometers faults. European Wind Energy Conference and Exhibition. EWEC 2009 (17-19 March, Marseille, France). 2009, 1-8
  • Siegel D and Lee J. An Auto-Associative Residual Processing and K-means Clustering Approach for Anemometer Health Assessment. Int. J. Progn. Heal. Manag. 2011, 2, 50-61
  • Sun L, Chen C and Cheng Q. Feature Extraction and Pattern Identification for Anemometer Condition Diagnosis. Int. J. Progn. Heal. Manag. 2012, 3, 8-18
  • Cassity J, Aven C and Parker D. Applying Weibull Distribution and Discriminant Function Techniques to Predict Damaged Cup Anemometers in the 2011 PHM Competition. Int. J. Progn. Heal. Manag. 2012, 3, 1-7
  • Beltran J, Guerrero J J, Melero J J and Llombart A. Detection of nacelle anemometer faults in a wind farm minimizing the uncertainty. Wind Energy, 2013, 16, 939-952
  • Fuser A, Fontaine F and Copper J. Data quality, consistency, and interpretation management for wind farms by using neural networks. Proc. Int. Parallel Distrib. Process. Symp. IPDPS, 2014, 430-438
  • Baseer M A, Meyer J P, Rehman S, Mahbub A M, Al-Hadhrami L M and Lashin A. Performance evaluation of cup-anemometers and wind speed characteristics analysis. Renew. Energy. 2016, 86, 733-744
  • Azorin-Molina C, Asin J, McVicar T R, Minola L, Lopez-Moreno J I, Vicente-Serrano S M and Chen D. Evaluating anemometer drift: A statistical approach to correct biases in wind speed measurement. Atmos. Res. 2018, 203, 175-188
  • Roibas-Millan E, Cubas J and Pindado S. Studies on cup anemometer performances carried out at IDR/UPM Institute. Past and present research Energies, 2017, 10, 1-17
  • Pindado S, Vega E, Martínez A, Meseguer E, Franchini S and Pérez I. Analysis of calibration results from cup and propeller anemometers. Influence on wind turbine Annual Energy Production (AEP) calculations. Wind Energy, 2011, 14, 119-32
  • Pindado S, Pérez J and Avila-Sanchez S. On cup anemometer rotor aerodynamics. Sensors, 2012, 12, 6198-6217
  • Pindado S, Barrero-Gil A and Sanz A. Cup Anemometers’ Loss of Performance Due to Ageing Processes, and Its Effect on Annual Energy Production (AEP) Estimates. Energies 2012, 5, 1664-1685
  • Pindado S, Sanz A and Wery A. Deviation of Cup and Propeller Anemometer Calibration Results with Air Density. Energies 2012, 5, 683-701
  • Pindado, S.; Pérez, I.; Aguado, M. Fourier analysis of the aerodynamic behavior of cup anemometers. Meas. Sci. Technol. 2013, 24, 065802.
  • Pindado S, Cubas J and Sanz-Andrés A. Aerodynamic analysis of cup anemometers performance. The stationary harmonic response. Sci. World J. 2013, 1-11, 197325
  • Vega E, Pindado S, Martínez A, Meseguer E and Garcı́a L. Anomaly detection on cup anemometers Meas. Sci. Technol. 2014, 25, 127002
  • Pindado S and Cubas J Some Developments on Cup Anemometer Aerodynamics Defect Diffus. Forum 2014, 348, 179-185
  • Pindado S, Cubas J and Sorribes-Palmer F. On the harmonic analysis of cup anemometer rotation speed: A principle to monitor performance and maintenance status of rotating meteorological sensors. Measurement 2015, 73, 401-418
  • Pindado S, Ramos-Cenzano A and Cubas J. Improved analytical method to study the cup anemometer performance. Meas. Sci. Technol. 2015, 26, 1-6
  • Pindado S, Cubas J and Sorribes-Palmer F. On the Analytical Approach to Present Engineering Problems: Photovoltaic Systems Behavior, Wind Speed Sensors Performance, and High-Speed Train Pressure Wave Effects in Tunnels. Math. Probl. Eng. 2015, 1-17
  • Makkonen L, Lehtonen P and Helle L. Anemometry in icing conditions. J. Atmos. Ocean. Technol. 2001, 18, 1457-1469
  • ASTM International. Standard Test Method for Determining the Performance of a Cup Anemometer or Propeller Anemometer (ASTM D 5096-02), (West Conshohocken, PA 19428, USA: ASTM International), 2002
  • ENAC Anexo Técnico. Acreditación No 134/LC10. 095. Instituto Universitario De Microgravedad "Ignacio Da Riva". 2012. retriewed from; https://www.enac.es/documents/7020/67cfa73f-f539-4c13-8172-986daad8514a
  • Martínez A, Vega E, Pindado S, Meseguer E and García L. Deviations of cup anemometer rotational speed measurements due to steady state harmonic accelerations of the rotor. Measurement 2016, 90, 483-490
  • Ramos-cenzano A, Ogueta-gutierrez M and Pindado S. On the output frequency measurement within cup anemometer calibrations. Measurement 2019, 136, 718-723

Performance analysis of present cup anemometers

Year 2019, Volume: 3 Issue: 4, 129 - 138, 31.12.2019
https://doi.org/10.30521/jes.614212

Abstract

The cup anemometer, wind speed sensor developed by T.R. Robinson in the
19
th century, remains today as the best option in relation to
important scientific and economic sectors such as the meteorology sector or the
wind energy sector. Despite the great advances reached by new technologies as
sonic anemometry, LIDAR or SODAR, the cup anemometer is the most demanded wind
speed sensor thanks to its balance between the accuracy, reliability, endurance
and the cost. In the present paper, the work carried out in relation to this
instrument at the IDR/UPM Institute is briefly summarized, and then the results
from the last research testing campaigns are included. The output signal of the
first class cup anemometers such as Thies CLIMA First Class, Thies CLIMA
4.3350, and Vector Instruments is analyzed to obtain insights on the instrument
accuracy. It is found that three accelerations of the rotor are converted into
a pulsed output signals, leading to some error if that is not taken into
account. Besides, the way the output signal is registered in order to correlate
the output frequency with the wind speed has proven to be also a source of
error. Two ways of extracting the output frequency, namely by Counting Pulses (CP),
and by using FFT are compared. Results indicate that the wind speed errors are six
times larger in the case of using FFT.

References

  • Sanz-Andrés A, Pindado S, and Sorribes F. Mathematical analysis of the effect of the rotor geometry on cup anemometer response. Sci. World J. 2014, 1-23
  • Robinson T R. On a New Anemometer, Proc. R. Irish Acad. 1847, 4(1836-1869), 566-572
  • Robinson T R. On the Determination of the Constants of the Cup Anemometer by Experiments with a Whirling Machine. Philos. Trans. R. Soc. London 1878, 169, 777-822
  • Robinson T R. On the Determination of the Constants of the Cup Anemometer by Experiments with a Whirling Machine. Proc. R. Soc. 1878, 27, 286-9
  • Robinson T R. On the Constants of the Cup Anemometer. Proc. R. Soc. London. 1880, 30, 572-574
  • Robinson T R. On the Determination of the Constants of the Cup Anemometer by Experiments with a Whirling Machine. Part II Philos. Trans. R. Soc. London. 1880, 171, 1055-1070
  • Chree C. Contribution to the Theory of the Robinson Cup- Anemometer London, Edinburgh Dublin Philos. Mag. J. Sci. 1895, 40, 63-90
  • Marvin C F. Anemometer Tests. Mon. Weather Rev. 1900, 58-63
  • Brazier, M.C.-E. Sur la variation des indications des anémomètres Robinson et Richard en fonction de l’inclinaison du vent. C. R. Séances Acad. Sci. 1920, 170, 610–612
  • Brazier M C-E. Sur la comparabilité des anémomètres. Comptes Rendus des Séances l’Académie des Sci. 1921, 172, 843-5
  • Brazier M C-E. On the Comparability of Anemometers. Mon. Weather Rev. 1921,49, 575-575
  • Patterson J. The cup anemometer. Trans. R. Soc. Canada Ser. 1926, III 20, 1-54
  • Schrenk O Über die Trägheitsfehler des Schalenkreuz-Anemometers bei schwankender. Windstärke Zeitschrift fur Tech. Phys. 1929, 10, 57-66
  • Sheppard P A. Anemometry: a critical and historical survey. Proc. Phys. Soc. 1941, 53, 361-90
  • Fergusson, S.P. Harvard Meteorological Studies No. 4. Experimental Studies of Cup Anemometers; Harvard University Press: Cambridge, MA, USA, 1939.
  • Brevoort, M.J.; Joyner, U.T. Experimental Investigation of the Robinson-Type Cup Anemometer; NACA TN-513; Government Printing Office: Washington, DC, USA, 1935.
  • Marvin, C.F. Recent Advances in Anemometry. Mon. Weather Rev. 1934, 62, 115–120
  • Hubbard J, Brescoll G. Aerodynamic investigation of a cup anemometer. NACA TN-502, 1934.
  • Sanuki M. Experiments of the Start and Stop of Windmill and Cup Anemometers with Particular Reference to their Over-Estimation Factors. Pap. Meteorol. Geophys. 1952, 3, 41-53
  • Sanuki M and Kimura S. Some Aerodynamic Aspects Deduced from the Start and Stop Experiment of Three- and Four-cup Anemometer. Pap. Meteorol. Geophys. 1954, 5, 695-698
  • Ramachandran S. A theoretical study of cup and vane anemometers. Q. J. R. Meteorol. Soc. 1969, 95, 163-180
  • Ramachandran S. A theoretical study of cup and vane anemometers. Part II Q. J. R. Meteorol. Soc. 1969, 1996, 115-23
  • Scrase F, Sheppard P. The errors of cup anemometers in fluctuating winds. J. Sci. Instrum. 1944, 21, 160-161
  • Deacon E L. The over-estimation error of cup anemometers in fluctuating winds. J. Sci. Instrum. 1951, 28, 231-234
  • MacCready Jr. P B. Mean wind speed measurements in turbulence. J. Appl. Meteorol. 1966, 5, 219-25
  • Kondo J, Naito G I and Fujinawa Y. Response of Cup Anemometer in Turbulence. J. Meteorol. Soc. Japan. 1971, 49, 63-74
  • Lindley D and Bowen A J. The response of cup and propeller anemometers to fluctuating wind speeds. 5th Australasian Conference on Hydraulics and Fluid Mechanics, 1974, 1, 269-277
  • Wyngaard J C, Bauman J T and Lynch R A. Cup anemometer dynamics Flow Its Meas. Control Sci. Ind. 1974, 1, 701-708
  • Busch N E and Kristensen L. Cup anemometer overspeeding. J. Appl. Meteorol. 1976, 15, 1328-1332
  • International Electrotechnical Commission. International Standard IEC-61400-1. Wind Turbines. Part 1: Design requirements, 2005
  • International Electrotechnical Commission. International Standard IEC-61400-12-1. Wind Turbines. Part 12-1: Power performance measurements of electricity producing wind turbines. First edition, 2005-12
  • MEASNET. Cup Anemometer Calibration Procedure, Version 2 (October 2009); MEASNET: Madrid, Spain, 2009.
  • MEASNET. Cup anemometer calibration procedure, Version 1 (September 1997, updated 24/11/2008) MEASNET: Madrid, Spain, 1997
  • Bégin-Drolet A, Lemay J and Ruel J. Time domain modeling of cup anemometers using artificial neural networks Flow Meas. Instrum. 2013, 33, 10-27
  • Torochkov V Y and Surazhskiy D Y. Measuring average wind speed (No. FTD-HT-23-341-69). Foreign Technol. Div. Wright-Patterson AFB OH. 1969
  • Hayashi T. Dynamic response of a cup anemometer. J. Atmos. Ocean. Technol. 1987, 4, 281-287
  • Hristov T S, Miller S D and Friehe C A. Linear time-invariant compensation of cup anemometer and vane inertia. Boundary-layer Meteorol. 2000, 97, 293-307
  • Solov’ev Y P, Korovushkin A I and Toloknov Y N. Characteristics of a cup anemometer and a procedure of measuring the wind velocity. Phys. Oceanogr. 2004, 14, 173-186
  • Selyaninov M G. Dynamic Error of Rotating Flow-Rate Transducer. Meas. Tech. 2004, 47, 571-577
  • Yahaya, S. and Frangi, J. P. Cup anemometer response to the wind turbulence-measurement of the horizontal wind variance, Ann. Geophys., 2004, 22, 3363-3374, https://doi.org/10.5194/angeo-22-3363-2004.
  • Potsdam M, Cicolani L, Gassaway B and Mattle D. Aerodynamic Analysis and Flight Simulation of an Anemometer for Rotational Stabilization of a Helicopter Slung Load. Proceedings of the 31st AIAA Applied Aerodynamics Conference (San Diego, CA, USA). 2013, 1-22
  • Ramos Cenzano, A. Análisis Mediante Cálculo Numérico (CFD) del Comportamiento de Anemómetros de Cazoletas; Universidad Politécnica de Madrid: Madrid, Spain, 2014
  • Paschen M and Laurat S. Precision of Cup Anemometers - A Numerical Study. Eur. Int. J. Sci. Technol. 2014, 3, 39-45
  • Yuan K, Xu J, Wei W and Qi Y. Research on Numerical Simulation of the Aerodynamic Characteristics of the Three-Cup Anemometer Based on CFD. Int. Core J. Eng. 2016, 2, 28-33
  • Beltrán J, Llombart A and Guerrero J. Detection of nacelle anemometers faults in a wind farm Proceedings of International Conference on Renewable Energies and Power Quality. ICREPQ 2009 (15-17 April, Valencia, Spain). 2009, 1-6
  • Beltrán J, Llombart A and Guerrero J. A bin method with data range selection for detection of nacelle anemometers faults. European Wind Energy Conference and Exhibition. EWEC 2009 (17-19 March, Marseille, France). 2009, 1-8
  • Siegel D and Lee J. An Auto-Associative Residual Processing and K-means Clustering Approach for Anemometer Health Assessment. Int. J. Progn. Heal. Manag. 2011, 2, 50-61
  • Sun L, Chen C and Cheng Q. Feature Extraction and Pattern Identification for Anemometer Condition Diagnosis. Int. J. Progn. Heal. Manag. 2012, 3, 8-18
  • Cassity J, Aven C and Parker D. Applying Weibull Distribution and Discriminant Function Techniques to Predict Damaged Cup Anemometers in the 2011 PHM Competition. Int. J. Progn. Heal. Manag. 2012, 3, 1-7
  • Beltran J, Guerrero J J, Melero J J and Llombart A. Detection of nacelle anemometer faults in a wind farm minimizing the uncertainty. Wind Energy, 2013, 16, 939-952
  • Fuser A, Fontaine F and Copper J. Data quality, consistency, and interpretation management for wind farms by using neural networks. Proc. Int. Parallel Distrib. Process. Symp. IPDPS, 2014, 430-438
  • Baseer M A, Meyer J P, Rehman S, Mahbub A M, Al-Hadhrami L M and Lashin A. Performance evaluation of cup-anemometers and wind speed characteristics analysis. Renew. Energy. 2016, 86, 733-744
  • Azorin-Molina C, Asin J, McVicar T R, Minola L, Lopez-Moreno J I, Vicente-Serrano S M and Chen D. Evaluating anemometer drift: A statistical approach to correct biases in wind speed measurement. Atmos. Res. 2018, 203, 175-188
  • Roibas-Millan E, Cubas J and Pindado S. Studies on cup anemometer performances carried out at IDR/UPM Institute. Past and present research Energies, 2017, 10, 1-17
  • Pindado S, Vega E, Martínez A, Meseguer E, Franchini S and Pérez I. Analysis of calibration results from cup and propeller anemometers. Influence on wind turbine Annual Energy Production (AEP) calculations. Wind Energy, 2011, 14, 119-32
  • Pindado S, Pérez J and Avila-Sanchez S. On cup anemometer rotor aerodynamics. Sensors, 2012, 12, 6198-6217
  • Pindado S, Barrero-Gil A and Sanz A. Cup Anemometers’ Loss of Performance Due to Ageing Processes, and Its Effect on Annual Energy Production (AEP) Estimates. Energies 2012, 5, 1664-1685
  • Pindado S, Sanz A and Wery A. Deviation of Cup and Propeller Anemometer Calibration Results with Air Density. Energies 2012, 5, 683-701
  • Pindado, S.; Pérez, I.; Aguado, M. Fourier analysis of the aerodynamic behavior of cup anemometers. Meas. Sci. Technol. 2013, 24, 065802.
  • Pindado S, Cubas J and Sanz-Andrés A. Aerodynamic analysis of cup anemometers performance. The stationary harmonic response. Sci. World J. 2013, 1-11, 197325
  • Vega E, Pindado S, Martínez A, Meseguer E and Garcı́a L. Anomaly detection on cup anemometers Meas. Sci. Technol. 2014, 25, 127002
  • Pindado S and Cubas J Some Developments on Cup Anemometer Aerodynamics Defect Diffus. Forum 2014, 348, 179-185
  • Pindado S, Cubas J and Sorribes-Palmer F. On the harmonic analysis of cup anemometer rotation speed: A principle to monitor performance and maintenance status of rotating meteorological sensors. Measurement 2015, 73, 401-418
  • Pindado S, Ramos-Cenzano A and Cubas J. Improved analytical method to study the cup anemometer performance. Meas. Sci. Technol. 2015, 26, 1-6
  • Pindado S, Cubas J and Sorribes-Palmer F. On the Analytical Approach to Present Engineering Problems: Photovoltaic Systems Behavior, Wind Speed Sensors Performance, and High-Speed Train Pressure Wave Effects in Tunnels. Math. Probl. Eng. 2015, 1-17
  • Makkonen L, Lehtonen P and Helle L. Anemometry in icing conditions. J. Atmos. Ocean. Technol. 2001, 18, 1457-1469
  • ASTM International. Standard Test Method for Determining the Performance of a Cup Anemometer or Propeller Anemometer (ASTM D 5096-02), (West Conshohocken, PA 19428, USA: ASTM International), 2002
  • ENAC Anexo Técnico. Acreditación No 134/LC10. 095. Instituto Universitario De Microgravedad "Ignacio Da Riva". 2012. retriewed from; https://www.enac.es/documents/7020/67cfa73f-f539-4c13-8172-986daad8514a
  • Martínez A, Vega E, Pindado S, Meseguer E and García L. Deviations of cup anemometer rotational speed measurements due to steady state harmonic accelerations of the rotor. Measurement 2016, 90, 483-490
  • Ramos-cenzano A, Ogueta-gutierrez M and Pindado S. On the output frequency measurement within cup anemometer calibrations. Measurement 2019, 136, 718-723
There are 70 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

álvaro Ramos-cenzano This is me 0000-0003-4910-7258

Mikel Ogueta-gutiérrez 0000-0001-9183-450X

Santiago Pindado This is me 0000-0003-2073-8275

Publication Date December 31, 2019
Acceptance Date November 30, 2019
Published in Issue Year 2019 Volume: 3 Issue: 4

Cite

Vancouver Ramos-cenzano á, Ogueta-gutiérrez M, Pindado S. Performance analysis of present cup anemometers. Journal of Energy Systems. 2019;3(4):129-38.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Journal of Energy Systems is licensed under CC BY-NC 4.0