Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 5 Sayı: 2, 149 - 164, 30.06.2021
https://doi.org/10.30521/jes.872530

Öz

Kaynakça

  • [1] Kleinstreuer C, Feng Y. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett 6. 2011;229.
  • [2] Sureshkumar R, Tharves Mohideen S, Nethaji N. Heat transfer characteristics of nanofluids in heat pipes: A review. Renewable and Sustainable Energy Reviews. 2013;20:397-410.
  • [3] Kulkarni D, Das D, Vajjha R. Application of nanofluids in heating buildings and reducing pollution. Applied Energy. 2009;86:12:2566-2573.
  • [4] Senthilraja S, Karthikeyan M, Gangadevi R. Nanofluid Applications in Future Automobiles: Comprehensive Review of Existing Data. Nano-Micro Lett. 2, 306–310.
  • [5] Sidik N, Yazid M, Mamat R. A review on the application of nanofluids in vehicle engine cooling system. International Communications in Heat and Mass Transfer. 2015;68:85-90.
  • [6] Sajid M, Ali H, Recent advances in application of nanofluids in heat transfer devices: A critical review. Renewable and Sustainable Energy Reviews. 2019;103:556–592.
  • [7] Martin K, Sözen A, Çiftçi E, Ali H. An experimental investigation on aqueous Fe–CuO hybrid nanofluid usage in a plain heat pipe. International Journal of Thermophysics. 2020;41:135:1-21. DOI:10.1007/s10765-020-02716-6.
  • [8] Aydın D, Çiftçi E, Gürü M, Sözen A. The impacts of nanoparticle concentration and surfactant type on thermal performance of a thermosyphon heat pipe working with bauxite nanofluid, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020;1-24. DOI: 10.1080/15567036.2020.1800141.
  • [9] Sözen A, Khanları A, Ciftci E, Heat transfer enhancement of plate heat exchanger utilizing kaolin-including working fluid, Proc IMechE Part A: J Power and Energy, 2019;1–9. DOI: 10.1177/0957650919832445.
  • [10] Gürbüz E, Variyenli H, Sözen A, Khanlari A, Ökten M. Experimental and numerical analysis on using CuO-Al2O3/water hybrid nanofluid in a U-type tubular heat exchanger. International Journal of Numerical Methods for Heat & Fluid Flow. 2020;0961-5539. DOI 10.1108/HFF-04-2020-0195.
  • [11] Eapen J, Rusconi R, Piazza R, Yip S. The classical nature of thermal conduction in nanofluids. Journal of Heat Transfer, 2010;132(10):102402.
  • [12] Sarviya R, Fuskele V. Review on Thermal Conductivity of Nanofluids, Materials Today: Proceedings. 2017;4:4022-31.
  • [13] Kotia A, Borkakoti S, Deval P, Ghosh S, Review of interfacial layer’s effect on thermal conductivity in nanofluid, Heat Mass Transfer, 2017;53:2199–2209.
  • [14] Henderson J., Frank S. On the interface between a fluid and a planar wall, Molecular Physics: An International Journal at the Interface Between Chemistry and Physics. 1984;51:4:991-1010.
  • [15] Rizvi I, Jain A, Ghosh S, Mukherjee P.S. Mathematical modelling of thermal conductivity for nanofluid considering interfacial nano-layer. Heat Mass Transfer. 2013;49:595–600.
  • [16] Kouloulias K, Sergis A, Hardalupas Y. Sedimentation in nanofluids during a natural convection experiment. International Journal of Heat and Mass Transfer. 2016;101:1193-1203.
  • [17] Slamet, Redjeki A. S. Interaction between surfactant and titania in a detergent nanofluid system. 2017. doi:10.1063/1.5011920.
  • [18] Choudhary R, Khurana D, Kumar A, Subudhi S. Stability analysis of Al2O3/water nanofluids. Journal of Experimental Nanoscience. 2017;12-1:140-51.
  • [19] Xuan Y, Li Q, Tie P. The effect of surfactants on heat transfer feature of nanofluids. Experimental Thermal and Fluid Science. 2013;46:259–262.
  • [20] Mahbubul I, Saidur R, Amalina M, Elcioglu E, Okutucu-Ozyurt T. Effective ultrasonication process for better colloidal dispersion of nanofluid. Ultrasonics Sonochemistry. 2015;26:361-369.
  • [21] Asadi A, Alarifi I, Ali V, Nguyen H. An experimental investigation on the effects of ultrasonication time on stability and thermal conductivity of MWCNT-water nanofluid: Finding the optimum ultrasonication time. Ultrasonics – Sonochemistry. 2019;58:104639.
  • [22] Mugica I, Poncet S, A critical review of the most popular mathematical models for nanofluid thermal conductivity, Journal of Nanoparticle Research, 2020;22:113, https://doi.org/10.1007/s11051-020-4776-y
  • [23] Elsayed MM, Cevc G. Turbidity spectroscopy for characterization of submicroscopic drug carriers, such as nanoparticles and lipid vesicles: size determination. Pharm Res. 2011;28:2204-2222. doi:10.1007/s11095-011-0448-z.
  • [24] Dharmalingam,Sivagnanaprabhu K, Chinnasamy C, Senthilkumar B. Optimization studies on the performance characteristics of solar flat – plate collector using Taguchi Method, Middle-East Journal of Scientific Research, 2015;23(5):861-868.
  • [25] Elcioglua E, Yazicioglu A, Turgut A, Anagun A. Experimental study and Taguchi Analysis on alumina-water nanofluid viscosity, Applied Thermal Engineering, 2018;128: 973-981.
  • [26] Horng-Wen W, Zhan-Yi W. Using Taguchi method on combustion performance of a diesel engine with diesel/biodiesel blend and port-inducting H2, Applied Energy, 2013:104:362–370.
  • [27] Taguchi G. Introduction to quality engineering. Whiter Plains, New York: Kraus International Publications. 1986.
  • [28] Allen Zennifer M, Manikandan S, Suganthi K S, Vinodhan V, Rajan K S. Development of CuO–ethylene glycol nanofluids for efficient energy management: Assessment of potential for energy recovery, Energy Conversion and Management, 2015:105;685–696.
  • [29] Zhai Y, Li L, Wang J, Li Z. Evaluation of surfactant on stability and thermal performance of Al2O3-ethylene glycol (EG) nanofluids. Powder Technology, 2019;343:215–224.
  • [30] Savithiri S, Pattamatta A, Das S K. Scaling analysis for the investigation of slip mechanisms in nanofluids. Nanoscale Res Lett, 2011;6:471. 10.1186/1556-276X-6-471.
  • [31] Lemmon E, Huber M, McLinden M. Reference Fluid Thermodynamic and Transport Properties (REFPROP), Ver. 9.0, National Institute of Standards and Technology.
  • [32] Holman J. P. Experimental Methods for Engineers, seventh ed. New York: McGraw-Hill. 2001.
  • [33] Gopalsamy B M, Mondal B, Ghosh S. Taguchi method and ANOVA: An Approach for process parameters optimisation of Hard Machining while machining hardened steel, Journal of scientific and industrial research, 2009;68:686-695.
  • [34] Das P K. A review based on the effect and mechanism of thermal conductivity ofnormal nanofluids and hybrid nanofluids, Journal of Molecular Liquids. 2017;240:420–446.
  • [35] X.J. Wang, D.S. Zhu, S. Yang. Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids, Chemical Physics Letters, 2009;470:107-111.
  • [36] Chen L, Xie H. Properties of carbon nanotube nanofluids stabilized by cationic gemini surfactant. Thermochimica Acta. 2010;506:62-66.
  • [37] Jang S, Choi S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied Physics Letters. 2004;84:4316. doi: 10.1063/1.1756684
  • [38] Mukherjee S, Mishra P C, Chaudhuri P. Enhancing Thermo-Economic Performance of TiO2-Water Nanofluids: An Experimental Investigation. JOM,2020. https://doi.org/10.1007/s11837-020-04336-9
  • [39] Michaelides EE, Nanofluidics. Springer, Switzerland, 2014.
  • [40] Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer, 2003;125(4):567–574.
  • [41] Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research. 2004;6:577–588.
  • [42] Teng T P, Hung Y H, Teng T C, Moa H E, Hsu H G, The effect of alumina/water nanofluid particle size on thermal conductivity, Appl. Therm. Eng., 2010;2213–2218.
  • [43] Mintsa H A, Roy G, Nguyen C T, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids, Int. J. Therm. Sci. 2009;48;363–371.
  • [44] He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transf. 2007;50;2272–2281.
  • [45] Kim S H, Choi S R, Kim D. Thermal conductivity of metal oxide nanofluids: particle size dependence and effect of laser irradiation, J. Heat Transf. 2007;129;298–307.
  • [46] Zhi L, Hai-Lung T. Thermal conductivity of interfacial layers in nanofluids, Physıcal Revıew E, 2011;83:041602

Study of the effect of preparation parameters on thermal conductivity of metal oxide nanofluids using Taguchi method

Yıl 2021, Cilt: 5 Sayı: 2, 149 - 164, 30.06.2021
https://doi.org/10.30521/jes.872530

Öz

The optimization of process parameters of the nanofluid preparation process for maximum stability and high heat transfer is an active and important area of research. In this work, the effect of the surfactant material, surfactant weight, and ultrasonication time are studied on distilled water-based CuO, Fe3O4, and CuO+Fe3O4 nanofluids. Taguchi L9 orthogonal array was used for the design of the experiment and 9 samples were prepared using this array. The effect of each level of process parameter on the thermal conductivity is analyzed by calculating Signal to Noise Ratio (SNR) and optimum levels of these parameters are identified. The crucial role of stability in delivering high thermal conductivity nanofluids as predicted by SNR analysis is further confirmed using Analysis of Variance (ANOVA).

Kaynakça

  • [1] Kleinstreuer C, Feng Y. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett 6. 2011;229.
  • [2] Sureshkumar R, Tharves Mohideen S, Nethaji N. Heat transfer characteristics of nanofluids in heat pipes: A review. Renewable and Sustainable Energy Reviews. 2013;20:397-410.
  • [3] Kulkarni D, Das D, Vajjha R. Application of nanofluids in heating buildings and reducing pollution. Applied Energy. 2009;86:12:2566-2573.
  • [4] Senthilraja S, Karthikeyan M, Gangadevi R. Nanofluid Applications in Future Automobiles: Comprehensive Review of Existing Data. Nano-Micro Lett. 2, 306–310.
  • [5] Sidik N, Yazid M, Mamat R. A review on the application of nanofluids in vehicle engine cooling system. International Communications in Heat and Mass Transfer. 2015;68:85-90.
  • [6] Sajid M, Ali H, Recent advances in application of nanofluids in heat transfer devices: A critical review. Renewable and Sustainable Energy Reviews. 2019;103:556–592.
  • [7] Martin K, Sözen A, Çiftçi E, Ali H. An experimental investigation on aqueous Fe–CuO hybrid nanofluid usage in a plain heat pipe. International Journal of Thermophysics. 2020;41:135:1-21. DOI:10.1007/s10765-020-02716-6.
  • [8] Aydın D, Çiftçi E, Gürü M, Sözen A. The impacts of nanoparticle concentration and surfactant type on thermal performance of a thermosyphon heat pipe working with bauxite nanofluid, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020;1-24. DOI: 10.1080/15567036.2020.1800141.
  • [9] Sözen A, Khanları A, Ciftci E, Heat transfer enhancement of plate heat exchanger utilizing kaolin-including working fluid, Proc IMechE Part A: J Power and Energy, 2019;1–9. DOI: 10.1177/0957650919832445.
  • [10] Gürbüz E, Variyenli H, Sözen A, Khanlari A, Ökten M. Experimental and numerical analysis on using CuO-Al2O3/water hybrid nanofluid in a U-type tubular heat exchanger. International Journal of Numerical Methods for Heat & Fluid Flow. 2020;0961-5539. DOI 10.1108/HFF-04-2020-0195.
  • [11] Eapen J, Rusconi R, Piazza R, Yip S. The classical nature of thermal conduction in nanofluids. Journal of Heat Transfer, 2010;132(10):102402.
  • [12] Sarviya R, Fuskele V. Review on Thermal Conductivity of Nanofluids, Materials Today: Proceedings. 2017;4:4022-31.
  • [13] Kotia A, Borkakoti S, Deval P, Ghosh S, Review of interfacial layer’s effect on thermal conductivity in nanofluid, Heat Mass Transfer, 2017;53:2199–2209.
  • [14] Henderson J., Frank S. On the interface between a fluid and a planar wall, Molecular Physics: An International Journal at the Interface Between Chemistry and Physics. 1984;51:4:991-1010.
  • [15] Rizvi I, Jain A, Ghosh S, Mukherjee P.S. Mathematical modelling of thermal conductivity for nanofluid considering interfacial nano-layer. Heat Mass Transfer. 2013;49:595–600.
  • [16] Kouloulias K, Sergis A, Hardalupas Y. Sedimentation in nanofluids during a natural convection experiment. International Journal of Heat and Mass Transfer. 2016;101:1193-1203.
  • [17] Slamet, Redjeki A. S. Interaction between surfactant and titania in a detergent nanofluid system. 2017. doi:10.1063/1.5011920.
  • [18] Choudhary R, Khurana D, Kumar A, Subudhi S. Stability analysis of Al2O3/water nanofluids. Journal of Experimental Nanoscience. 2017;12-1:140-51.
  • [19] Xuan Y, Li Q, Tie P. The effect of surfactants on heat transfer feature of nanofluids. Experimental Thermal and Fluid Science. 2013;46:259–262.
  • [20] Mahbubul I, Saidur R, Amalina M, Elcioglu E, Okutucu-Ozyurt T. Effective ultrasonication process for better colloidal dispersion of nanofluid. Ultrasonics Sonochemistry. 2015;26:361-369.
  • [21] Asadi A, Alarifi I, Ali V, Nguyen H. An experimental investigation on the effects of ultrasonication time on stability and thermal conductivity of MWCNT-water nanofluid: Finding the optimum ultrasonication time. Ultrasonics – Sonochemistry. 2019;58:104639.
  • [22] Mugica I, Poncet S, A critical review of the most popular mathematical models for nanofluid thermal conductivity, Journal of Nanoparticle Research, 2020;22:113, https://doi.org/10.1007/s11051-020-4776-y
  • [23] Elsayed MM, Cevc G. Turbidity spectroscopy for characterization of submicroscopic drug carriers, such as nanoparticles and lipid vesicles: size determination. Pharm Res. 2011;28:2204-2222. doi:10.1007/s11095-011-0448-z.
  • [24] Dharmalingam,Sivagnanaprabhu K, Chinnasamy C, Senthilkumar B. Optimization studies on the performance characteristics of solar flat – plate collector using Taguchi Method, Middle-East Journal of Scientific Research, 2015;23(5):861-868.
  • [25] Elcioglua E, Yazicioglu A, Turgut A, Anagun A. Experimental study and Taguchi Analysis on alumina-water nanofluid viscosity, Applied Thermal Engineering, 2018;128: 973-981.
  • [26] Horng-Wen W, Zhan-Yi W. Using Taguchi method on combustion performance of a diesel engine with diesel/biodiesel blend and port-inducting H2, Applied Energy, 2013:104:362–370.
  • [27] Taguchi G. Introduction to quality engineering. Whiter Plains, New York: Kraus International Publications. 1986.
  • [28] Allen Zennifer M, Manikandan S, Suganthi K S, Vinodhan V, Rajan K S. Development of CuO–ethylene glycol nanofluids for efficient energy management: Assessment of potential for energy recovery, Energy Conversion and Management, 2015:105;685–696.
  • [29] Zhai Y, Li L, Wang J, Li Z. Evaluation of surfactant on stability and thermal performance of Al2O3-ethylene glycol (EG) nanofluids. Powder Technology, 2019;343:215–224.
  • [30] Savithiri S, Pattamatta A, Das S K. Scaling analysis for the investigation of slip mechanisms in nanofluids. Nanoscale Res Lett, 2011;6:471. 10.1186/1556-276X-6-471.
  • [31] Lemmon E, Huber M, McLinden M. Reference Fluid Thermodynamic and Transport Properties (REFPROP), Ver. 9.0, National Institute of Standards and Technology.
  • [32] Holman J. P. Experimental Methods for Engineers, seventh ed. New York: McGraw-Hill. 2001.
  • [33] Gopalsamy B M, Mondal B, Ghosh S. Taguchi method and ANOVA: An Approach for process parameters optimisation of Hard Machining while machining hardened steel, Journal of scientific and industrial research, 2009;68:686-695.
  • [34] Das P K. A review based on the effect and mechanism of thermal conductivity ofnormal nanofluids and hybrid nanofluids, Journal of Molecular Liquids. 2017;240:420–446.
  • [35] X.J. Wang, D.S. Zhu, S. Yang. Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids, Chemical Physics Letters, 2009;470:107-111.
  • [36] Chen L, Xie H. Properties of carbon nanotube nanofluids stabilized by cationic gemini surfactant. Thermochimica Acta. 2010;506:62-66.
  • [37] Jang S, Choi S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied Physics Letters. 2004;84:4316. doi: 10.1063/1.1756684
  • [38] Mukherjee S, Mishra P C, Chaudhuri P. Enhancing Thermo-Economic Performance of TiO2-Water Nanofluids: An Experimental Investigation. JOM,2020. https://doi.org/10.1007/s11837-020-04336-9
  • [39] Michaelides EE, Nanofluidics. Springer, Switzerland, 2014.
  • [40] Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer, 2003;125(4):567–574.
  • [41] Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research. 2004;6:577–588.
  • [42] Teng T P, Hung Y H, Teng T C, Moa H E, Hsu H G, The effect of alumina/water nanofluid particle size on thermal conductivity, Appl. Therm. Eng., 2010;2213–2218.
  • [43] Mintsa H A, Roy G, Nguyen C T, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids, Int. J. Therm. Sci. 2009;48;363–371.
  • [44] He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transf. 2007;50;2272–2281.
  • [45] Kim S H, Choi S R, Kim D. Thermal conductivity of metal oxide nanofluids: particle size dependence and effect of laser irradiation, J. Heat Transf. 2007;129;298–307.
  • [46] Zhi L, Hai-Lung T. Thermal conductivity of interfacial layers in nanofluids, Physıcal Revıew E, 2011;83:041602
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği, Malzeme Üretim Teknolojileri
Bölüm Araştırma Makaleleri
Yazarlar

Vadıraj Hemadri Bu kişi benim 0000-0003-1353-2746

Nikhil Mane 0000-0002-9938-6841

Yayımlanma Tarihi 30 Haziran 2021
Kabul Tarihi 24 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 2

Kaynak Göster

Vancouver Hemadri V, Mane N. Study of the effect of preparation parameters on thermal conductivity of metal oxide nanofluids using Taguchi method. JES. 2021;5(2):149-64.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Creative Commons License JES is licensed to the public under a Creative Commons Attribution 4.0 license.