Research Article
BibTex RIS Cite
Year 2022, Volume: 6 Issue: 2, 165 - 175, 30.06.2022
https://doi.org/10.30521/jes.952627

Abstract

References

  • [1] Cozzi, L, Gould, T, Bouckart, S, Crow, D, Kim, TY, McGlade, C, Olejarnik, P, Wanner, B, Wetzel, D. World Energy Outlook 2020. IEA 2020; 2050(October): 1–461.
  • [2] IEA. India 2020 Policy Energy Review, 2017.
  • [3] Jain, S, Dubey, SK, Kumar, KR, Rakshit, D. Thermal Energy Storage for Solar Energy., In: Singh SN, Tiwari P, Tiwari S, editors. Fundamentals and Innovations in Solar Energy. Singapore : Springer, 2021, pp. 167–215. DOI: 10.1007/978-981-33-6456-1_9.
  • [4] Kumar, KR, Dashora, K, Krishnan, N, Sanyal, S, Chandra, H, Dharmaraja, S, Kumari, V. Feasibility assessment of renewable energy resources for tea plantation and industry in India-A review. Renewable and Sustainable Energy Reviews 2021; 145: 111083.
  • [5] Jain, S, Kumar, KR, Rakshit, D. Heat transfer augmentation in single and multiple (cascade) phase change materials based thermal energy storage: Research progress, challenges, and recommendations. Sustainable Energy Technologies and Assessments 2021; 48: 101633.
  • [6] Bogdanović, B, Spliethoff, B, Ritter, A. The magnesium hydride system for heat storage and cooling. Zeitschrift für Physikalische Chemie 1989;164(2):1497-1508. DOI: 10.1524/zpch.1989.164.Part_2.1497.
  • [7] Bogdanović, B, Ritter, A, Spliethoff, B, Straβburger, K. A process steam generator based on the high temperature magnesium hydride/magnesium heat storage system. International journal of hydrogen energy 1995; 20(10): 811-822. DOI: 10.1016/0360-3199(95)00012-3.
  • [8] Paskevicius, M, Sheppard, DA, Williamson, K, Buckley, CE. Metal hydride thermal heat storage prototype for concentrating solar thermal power. Energy 2015; 88: 469-477. DOI: 10.1016/j.energy.2015.05.068.
  • [9] d'Entremont, A, Corgnale, C, Sulic, M, Hardy, B, Zidan, R, Motyka, T. Modeling of a thermal energy storage system based on coupled metal hydrides (magnesium iron–sodium alanate) for concentrating solar power plants. International Journal of Hydrogen Energy 2017; 42(35):22518-22529. DOI: 10.1016/j.ijhydene.2017.04.231.
  • [10] Mellouli, S, Askri, F, Edacherian, A, Alqahtani, T, Algarni, S, Abdelmajid, J, Phelan, P. Performance analysis of a thermal energy storage system based on paired metal hydrides for concentrating solar power plants. Applied Thermal Engineering 2018; 144:1017-1029. DOI: .1037//0033-2909.I26.1.78.
  • [11] d'Entremont, A, Corgnale, C, Hardy, B, Zidan, R. Simulation of high temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants. International Journal of Hydrogen Energy 2018; 43(2): 817-830. DOI: 10.1016/j.ijhydene.2017.11.100.
  • [12] Malleswararao, K, Aswin, N, Murthy, SS, Dutta, P. Performance prediction of a coupled metal hydride based thermal energy storage system. International Journal of Hydrogen Energy 2020; 45(32):16239-16253. DOI: 10.1016/j.ijhydene.2020.03.251.
  • [13] Malleswararao, K, Aswin, N, Murthy, SS, Dutta, P. Studies on a dynamically coupled multifunctional metal hydride thermal battery. Journal of Alloys and Compounds 2021; 866: 158979.
  • [14] Tortoza, MS, Humphries, TD, Sheppard, DA, Paskevicius, M, Rowles, MR, Sofianos, MV, Aguey-Zinsou, KF, Buckley, CE. Thermodynamics and performance of the Mg–H–F system for thermochemical energy storage applications. Physical Chemistry Chemical Physics 2018; 20(4): 2274-2283. DOI: 10.1039/c7cp07433f.
  • [15] Sheppard, DA, Paskevicius, M, Humphries, TD, Felderhoff, M, Capurso, G, von Colbe, JB, Dornheim, M, Klassen, T, Ward, PA, Teprovich, JA, Corgnale, C. Metal hydrides for concentrating solar thermal power energy storage. Applied Physics A 2016; 122(395): 1-15. DOI: 10.1007/s00339-016-9825-0.
  • [16] Harries, DN, Paskevicius, M, Sheppard, DA, Price, TE, Buckley, CE. Concentrating solar thermal heat storage using metal hydrides. Proceedings of the IEEE 2011; 100(2): 539-549. DOI:10.1109/JPROC.2011.2158509.
  • [17] Prasad, JS, Muthukumar, P, Desai, F, Basu, DN, Rahman, MM. A critical review of high-temperature reversible thermochemical energy storage systems. Applied Energy 2019; 254:113733. DOI: 10.1016/j.apenergy.2019.113733.
  • [18] Kumar, KR, Chaitanya, NK, Kumar, NS. Solar thermal energy technologies and its applications for process heating and power generation–A review. Journal of Cleaner Production 2020; 282 :125296. DOI: 10.1016/j.jclepro.2020.125296.
  • [19] Chung, CA, Lin, CS. Prediction of hydrogen desorption performance of Mg2Ni hydride reactors. International Journal of Hydrogen Energy 2009; 34(23): 9409-9423. DOI: 10.1016/j.ijhydene.2009.09.061.
  • [20] Mâad, HB, Askri, F, Virgone, J, Nasrallah, SB. Numerical study of high temperature metal-hydrogen reactor (Mg2Ni-H2) with heat reaction recovery using phase-change material during desorption. Applied Thermal Engineering 2018; 140: 225-234. DOI: 10.1016/j.applthermaleng.2018.05.009.
  • [21] Malan, A, Kumar KR. Coupled optical and thermal analysis of large aperture parabolic trough solar collector. International Journal of Energy Research 2021; 45(3): 4630-4651. DOI: doi.org/10.1002/er.6128
  • [22] Chung, C, Ho, CJ. Thermal–fluid behavior of the hydriding and dehydriding processes in a metal hydride hydrogen storage canister. International Journal of Hydrogen Energy 2009; 34(10): 4351-4364. DOI: 10.1016/j.ijhydene.2009.03.028.
  • [23] Jemni, A, Nasrallah, SB, Lamloumi, J. Experimental and theoretical study of ametal–hydrogen reactor. International Journal of Hydrogen Energy 1999; 24(7): 631-644. DOI: 10.1016/S0360-3199(98)00117-7.

Numerical investigation of energy desorption from magnesium nickel hydride based thermal energy storage system

Year 2022, Volume: 6 Issue: 2, 165 - 175, 30.06.2022
https://doi.org/10.30521/jes.952627

Abstract

The use of dual metal hydride system for thermal energy storage consists of high and low-temperature metal hydrides. In this study, a 3D cylindrical Magnesium Nickel hydride bed is analyzed for thermal energy discharge. The energy discharge from metal hydride bed initially at temperature of 400 K, a heat transfer fluid at 500 K temperature is supplied to extract the heat generated due to exothermic chemical reaction. In this article, variation of the number of heat transfer fluid tubes and effect of variation of aspect ratio (ratio of diameter to height) on energy desorption and heat transfer from metal hydride bed is performed. The optimal number of heat transfer fluid tubes is determined for various aspect ratios. The temperature variation of the metal hydride bed with an increase in the number of heat transfer fluid tubes is analyzed. The study of aspect ratio variation on energy desorption and heat transfer characteristics is analyzed for three aspect ratios 0.5, 1, and 2. The variation of thermal energy desorbed, net heat transfer and temperature variation of metal hydride bed are analyzed. The adequate number of heat transfer fluid tubes for AR 0.5, 1, and 2 is identified as 32, 48, and 72, respectively. The cumulative heat released from MH bed with AR 0.5, 1, and 2 is 350.94 kJ, 330.56 kJ, and 310.42 kJ, respectively. The study will be useful in designing the optimized metal hydride bed reactor for thermal energy storage applications.

References

  • [1] Cozzi, L, Gould, T, Bouckart, S, Crow, D, Kim, TY, McGlade, C, Olejarnik, P, Wanner, B, Wetzel, D. World Energy Outlook 2020. IEA 2020; 2050(October): 1–461.
  • [2] IEA. India 2020 Policy Energy Review, 2017.
  • [3] Jain, S, Dubey, SK, Kumar, KR, Rakshit, D. Thermal Energy Storage for Solar Energy., In: Singh SN, Tiwari P, Tiwari S, editors. Fundamentals and Innovations in Solar Energy. Singapore : Springer, 2021, pp. 167–215. DOI: 10.1007/978-981-33-6456-1_9.
  • [4] Kumar, KR, Dashora, K, Krishnan, N, Sanyal, S, Chandra, H, Dharmaraja, S, Kumari, V. Feasibility assessment of renewable energy resources for tea plantation and industry in India-A review. Renewable and Sustainable Energy Reviews 2021; 145: 111083.
  • [5] Jain, S, Kumar, KR, Rakshit, D. Heat transfer augmentation in single and multiple (cascade) phase change materials based thermal energy storage: Research progress, challenges, and recommendations. Sustainable Energy Technologies and Assessments 2021; 48: 101633.
  • [6] Bogdanović, B, Spliethoff, B, Ritter, A. The magnesium hydride system for heat storage and cooling. Zeitschrift für Physikalische Chemie 1989;164(2):1497-1508. DOI: 10.1524/zpch.1989.164.Part_2.1497.
  • [7] Bogdanović, B, Ritter, A, Spliethoff, B, Straβburger, K. A process steam generator based on the high temperature magnesium hydride/magnesium heat storage system. International journal of hydrogen energy 1995; 20(10): 811-822. DOI: 10.1016/0360-3199(95)00012-3.
  • [8] Paskevicius, M, Sheppard, DA, Williamson, K, Buckley, CE. Metal hydride thermal heat storage prototype for concentrating solar thermal power. Energy 2015; 88: 469-477. DOI: 10.1016/j.energy.2015.05.068.
  • [9] d'Entremont, A, Corgnale, C, Sulic, M, Hardy, B, Zidan, R, Motyka, T. Modeling of a thermal energy storage system based on coupled metal hydrides (magnesium iron–sodium alanate) for concentrating solar power plants. International Journal of Hydrogen Energy 2017; 42(35):22518-22529. DOI: 10.1016/j.ijhydene.2017.04.231.
  • [10] Mellouli, S, Askri, F, Edacherian, A, Alqahtani, T, Algarni, S, Abdelmajid, J, Phelan, P. Performance analysis of a thermal energy storage system based on paired metal hydrides for concentrating solar power plants. Applied Thermal Engineering 2018; 144:1017-1029. DOI: .1037//0033-2909.I26.1.78.
  • [11] d'Entremont, A, Corgnale, C, Hardy, B, Zidan, R. Simulation of high temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants. International Journal of Hydrogen Energy 2018; 43(2): 817-830. DOI: 10.1016/j.ijhydene.2017.11.100.
  • [12] Malleswararao, K, Aswin, N, Murthy, SS, Dutta, P. Performance prediction of a coupled metal hydride based thermal energy storage system. International Journal of Hydrogen Energy 2020; 45(32):16239-16253. DOI: 10.1016/j.ijhydene.2020.03.251.
  • [13] Malleswararao, K, Aswin, N, Murthy, SS, Dutta, P. Studies on a dynamically coupled multifunctional metal hydride thermal battery. Journal of Alloys and Compounds 2021; 866: 158979.
  • [14] Tortoza, MS, Humphries, TD, Sheppard, DA, Paskevicius, M, Rowles, MR, Sofianos, MV, Aguey-Zinsou, KF, Buckley, CE. Thermodynamics and performance of the Mg–H–F system for thermochemical energy storage applications. Physical Chemistry Chemical Physics 2018; 20(4): 2274-2283. DOI: 10.1039/c7cp07433f.
  • [15] Sheppard, DA, Paskevicius, M, Humphries, TD, Felderhoff, M, Capurso, G, von Colbe, JB, Dornheim, M, Klassen, T, Ward, PA, Teprovich, JA, Corgnale, C. Metal hydrides for concentrating solar thermal power energy storage. Applied Physics A 2016; 122(395): 1-15. DOI: 10.1007/s00339-016-9825-0.
  • [16] Harries, DN, Paskevicius, M, Sheppard, DA, Price, TE, Buckley, CE. Concentrating solar thermal heat storage using metal hydrides. Proceedings of the IEEE 2011; 100(2): 539-549. DOI:10.1109/JPROC.2011.2158509.
  • [17] Prasad, JS, Muthukumar, P, Desai, F, Basu, DN, Rahman, MM. A critical review of high-temperature reversible thermochemical energy storage systems. Applied Energy 2019; 254:113733. DOI: 10.1016/j.apenergy.2019.113733.
  • [18] Kumar, KR, Chaitanya, NK, Kumar, NS. Solar thermal energy technologies and its applications for process heating and power generation–A review. Journal of Cleaner Production 2020; 282 :125296. DOI: 10.1016/j.jclepro.2020.125296.
  • [19] Chung, CA, Lin, CS. Prediction of hydrogen desorption performance of Mg2Ni hydride reactors. International Journal of Hydrogen Energy 2009; 34(23): 9409-9423. DOI: 10.1016/j.ijhydene.2009.09.061.
  • [20] Mâad, HB, Askri, F, Virgone, J, Nasrallah, SB. Numerical study of high temperature metal-hydrogen reactor (Mg2Ni-H2) with heat reaction recovery using phase-change material during desorption. Applied Thermal Engineering 2018; 140: 225-234. DOI: 10.1016/j.applthermaleng.2018.05.009.
  • [21] Malan, A, Kumar KR. Coupled optical and thermal analysis of large aperture parabolic trough solar collector. International Journal of Energy Research 2021; 45(3): 4630-4651. DOI: doi.org/10.1002/er.6128
  • [22] Chung, C, Ho, CJ. Thermal–fluid behavior of the hydriding and dehydriding processes in a metal hydride hydrogen storage canister. International Journal of Hydrogen Energy 2009; 34(10): 4351-4364. DOI: 10.1016/j.ijhydene.2009.03.028.
  • [23] Jemni, A, Nasrallah, SB, Lamloumi, J. Experimental and theoretical study of ametal–hydrogen reactor. International Journal of Hydrogen Energy 1999; 24(7): 631-644. DOI: 10.1016/S0360-3199(98)00117-7.
There are 23 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Sumeet Kumar Dubey This is me 0000-0002-0171-9338

K Ravi Kumar 0000-0002-8502-4321

Publication Date June 30, 2022
Acceptance Date March 19, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

Vancouver Dubey SK, Kumar KR. Numerical investigation of energy desorption from magnesium nickel hydride based thermal energy storage system. Journal of Energy Systems. 2022;6(2):165-7.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Journal of Energy Systems is licensed under CC BY-NC 4.0