Araştırma Makalesi
BibTex RIS Kaynak Göster

Theoretical and computational studies on the optimal positions of NACA airfoils used in horizontal axis wind turbine blades

Yıl 2022, Cilt: 6 Sayı: 3, 369 - 386, 30.09.2022
https://doi.org/10.30521/jes.1055935

Öz

This paper presents a theoretical and computational study to determine the optimal positions of airfoils along the length of the horizontal axis wind turbine blade. We used four and five-digit NACA airfoils to model a 54-meter blade. The lift, drag coefficient, and lift-to-drag ratio of each airfoil are determined by using QBlade software. The aerodynamic performance of the airfoils is studied based on the blade element momentum theory, and Matlab software is used for numerical implementation. The velocity and pressure distributions on each airfoil are assessed using computational fluid dynamics. We implement the thickness distribution techniques to adjust the positions of the airfoils along the length of the blade. It is noted that stresses reach their maximum values at the root and minimum at the tip section. Thus, the thicker (NACA 4420) and thinner (NACA 23012) airfoils are set at 20% of the maximum chord and 91.11% at the tip sections of the blades. The remaining sections of the blade are configured using linear interpolation methods. Specifically, the maximum chord length of the new design is reduced by 18.06% compared to the NACA 23012 rotor blade. Finally, the recommended tip speed ratio for the designed rotor blade is estimated using the graphs of the normal and tangential forces, thereby producing a safe and efficient design.

Destekleyen Kurum

University of KwaZulu-Natal (UKZN), National Research Foundation of South Africa (NRF), DDU

Teşekkür

The research reported in this paper was supported by the University of KwaZulu-Natal (UKZN), National Research Foundation of South Africa (NRF) and DDU. The authors gratefully acknowledge the supports provided by UKZN, NRF and DDU.

Kaynakça

  • [1] Saenz-Aguirre, A, Fernandez-Gamiz, U, Zulueta, E, Ulazia, A, Martinez-Rico, J. Optimal wind turbine operation by artificial neural network-based active gurney flap flow Control. Sustainability 2019; 11: 2809. DOI: 10.3390/su11102809.
  • [2] Joyce, L, Feng, Z. Global wind report. Brussels, Belgium: Global Wind Energy Council, 2022.
  • [3] Fernandez-Gauna, B, Fernandez-Gamiz, U, Graña, M. Variable speed wind turbine controller adaptation by reinforcement learning. Integrated Computer-Aided Engineering 2017; 24: 27–39. DOI: 10.3233/ICA-160531.
  • [4] Ezio, S, Norman, L. Wind energy in Europe. Wind Engineering 1992; 16: 35–47.
  • [5] Hamed, S, Pooria, A, Ali, S. Aerodynamic performance enhancement of horizontal axis wind turbines by dimples on blades: Numerical investigation. Energy 2020; 195: 117056. DOI: 10.1016/j.energy.2020.117056.
  • [6] Eleni, D, Dionissios, M. Aerodynamic performance investigation under the influence of heavy rain of a NACA 0012 airfoil for wind turbine applications. International Review of Mechanical Engineering 2012; 6: 1228–1235. DOI:10.15866/ireme.v6i6.20761.
  • [7] Bili, S, Gaguk, J, Muh, K. Characteristic analysis of horizontal axis wind turbine using airfoil NACA 4712. Journal of Mechanical Engineering Science and Technology 2019; 3: 96–108. DOI: 10.17977/um016v3i22019p096.
  • [8] Jureczko, M, Pawlak, M, Mȩzyk, A. Optimisation of wind turbine blades. Journal of Material Processing Technology 2005: 167: 463–471. DOI: 10.1016/j.jmatprotec.2005.06.055.
  • [9] Ernesto, B, Andrea, T. Optimal design of horizontal-axis wind turbines using blade-element theory and evolutionary computation. Journal of Solar Energy Engineering 2002: 124: 357–363. DOI: 10.1115/1.1510868.
  • [10] Thang, Le-Duc, Quoc-Hung, N. Aerodynamic optimal design for horizontal axis wind turbine airfoil using integrated optimization method. International Journal of Computational Methods 2019; 16: 1–15. DOI: 10.1142/S0219876218410049.
  • [11] Sang-Lae, L, Sang, S. Structural design optimization of a wind turbine blade using the genetic algorithm. Engineering Optimization 2021. DOI: 10.1080/0305215X.2021.1973450.
  • [12] Grasso, F. Usage of numerical optimization in wind turbine airfoil design. Journal of Aircraft 2011; 48: 248–255, DOI: 10.2514/1.C031089.
  • [13] Chaudhary, K, Roy, A. Design and optimization of a small wind turbine blade for operation at low wind speed. World Journal of Engineering 2015; 12: 83–94. DOI: 10.1260/1708-5284.12.1.83.
  • [14] Haci, S, Ismail, B. Calculation of optimum angle of attack to determine maximum lift to drag ratio of NACA 632-215 airfoil. Journal of Multidisciplinary Engineering Science and Technology 2015; 2: 1103–1108.
  • [15] Mehmet, B, Sezayi, Y. Theoretical and computational investigations of the optimal tip-speed ratio of horizontal-axis wind turbines. Engineering Science and Technology, an International Journal 2018; 21: 1128–1142. DOI: 10.1016/j.jestch.2018.05.006.
  • [16] Ribeiro, A. F. P, Awruch, A. M, Gomes, H. M. An airfoil optimization technique for wind turbines. Applied Mathematical Modelling 2012; 36: 4898–4907. DOI: 10.1016/j.apm.2011.12.026.
  • [17] Yang, Y, Chun, L, Wanfu, Z, Jun, Y, Zhou, Y, Weipao, M, Kehua, Y. A multi-objective optimization for HAWT blades design by considering structural strength. Journal of Mechanical Science and. Technology 2016; 30: 3693–3703, DOI: 10.1007/s12206-016-0731-3.
  • [18] Jerson Rogério Pinheiro,V, João Tavares, P, André Luiz Amarante, M. An extension of BEM method applied to horizontal-axis wind turbine design. Renewable Energy 2011; 36: 1734–1740. DOI: 10.1016/j.renene.2010.11.018.
  • [19] Hua, Y, Wen, S, Haoran, X, Zedong, H, Chao, L. Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD. Renewable Energy 2014; 70: 107–115. DOI: 10.1016/j.renene.2014.05.002.
  • [20] Tenguria, N, Mittal, N, Ahmed, S. Investigation of blade performance of horizontal axis wind turbine based on blade element momentum theory (BEMT) using NACA airfoils. International Journal of Engineering, Science and Technology 2010; 2: 25–35. DOI: 10.4314/ijest.v2i12.64565.
  • [21] Jie, Z, Xin, C, Pan, P, Rongrong, G. Multi-objective structural optimization design of horizontal-axis wind turbine blades using the non-dominated sorting genetic algorithm II and finite element method. Energies 2014; 7: 988–1002. DOI: 10.3390/en7020988.
  • [22] Muhammad, M, Abdur, R, Muhammad, I, Mustansar, S, Noor, R. Design optimization and analysis of rotor blade for horizontal-axis wind turbine using Q-Blade software. Pakistan Journal of Science and Industrial Research Series A Physical Sciences 2021; 64: 65–75.
  • [23] Padmanabhan, K, Saravanan, R. Study of the performance and robustness of NREL and NACA 2D blade profiles for wind turbine applications. European Journal of Scientific Research 2012; 11: 59–72.
  • [24] Bhadake, P. G, Gore, V. G. A Review on Aerodynamic Analysis of Horizontal Axis Wind Turbine Blade Using CFD Technique. International Journal of Engineering and Applied Sciences 2016; 3: 16–18.
  • [25] Mulugeta, A, Gerawork, A. Aerodynamic design of horizontal axis wind turbine blades. FME Transactions 2017; 45: 647–660. DOI: 10.5937/fmet1704647M.
  • [26] Han, C. Aerodynamics analysis of small horizontal axis wind turbine blades by using 2D and 3D CFD modelling. MSc, University of Central Lancashire, Preston, England, 2011.
  • [27] Carlo C. CFD-RANS study of horizontal axis wind turbines. PhD, University of Cagliari, Cagliari, Italy, 2008.
  • [28] Mingwei, G, De, T, Ying, D. Reynolds number effect on the optimization of a wind turbine blade for maximum aerodynamic efficiency. Journal Energy Engineering 2016; 142: 04014056. DOI: 10.1061/(asce)ey.1943-7897.0000254.
  • [29] Getahun T. Design and testing of a composite material for modelling wind turbine blade structures in a tropical region. PhD, University of KwaZulu-Natal, Durban, South Africa, 2018.
  • [30] Manwell, J. F, McGowan, J. G. Wind energy explained theory, design and application. West Sussex, United Kingdom: A John Wiley and Sons Ltd Publication, 2009.
  • [31] Morgado, J, Vizinho, R, Silvestre, R, Páscoa, C. XFOIL vs CFD performance predictions for high lift low Reynolds number airfoils. Aerospace Science and Technology 2016; 52: 207–214. DOI: 10.1016/j.ast.2016.02.031.
  • [32] Mustafa, Y, Hasan, K, Erkan, Ç, Ziya, C. A comparative CFD analysis of NACA0012 and NACA4412 airfoils. Journal of Energy System 2018; 2: 145–159. DOI: 10.30521/jes.454193.
  • [33] Mostafa, F, Mahdi, A, Omid, N, Ali, M, Kyung, K. Aerodynamic performance improvement of wind turbine blade by cavity shape optimization. Renewable Energy 2019; 132: 773–785. DOI: 10.1016/j.renene.2018.08.047.
  • [34] Zhou, T, Cao, H, Zhang, M, Liao, C. Performance simulation of wind turbine with optimal designed trailing-edge serrations. Energy 2022; 243: 122998. DOI: 10.1016/j.energy.2021.122998.
  • [35] Yang, K. Geometry design optimization of a wind turbine blade considering effects on aerodynamic performance by linearization. Energies 2020; 13: 2320. DOI: 10.3390/en13092320.
  • [36] Akay, B, Ragni, D, Ferreira, S, Van Bussel, W. Experimental investigation of the root flow in a horizontal axis wind turbine. Wind Energy 2014; 17: 1093–1109. DOI: 10.1002/we.1620.
  • [37] Peter, S, Richard, C. Wind turbine blade design. Energies 2012; 5: 3425–3449. DOI: 10.3390/en5093425.
Yıl 2022, Cilt: 6 Sayı: 3, 369 - 386, 30.09.2022
https://doi.org/10.30521/jes.1055935

Öz

Kaynakça

  • [1] Saenz-Aguirre, A, Fernandez-Gamiz, U, Zulueta, E, Ulazia, A, Martinez-Rico, J. Optimal wind turbine operation by artificial neural network-based active gurney flap flow Control. Sustainability 2019; 11: 2809. DOI: 10.3390/su11102809.
  • [2] Joyce, L, Feng, Z. Global wind report. Brussels, Belgium: Global Wind Energy Council, 2022.
  • [3] Fernandez-Gauna, B, Fernandez-Gamiz, U, Graña, M. Variable speed wind turbine controller adaptation by reinforcement learning. Integrated Computer-Aided Engineering 2017; 24: 27–39. DOI: 10.3233/ICA-160531.
  • [4] Ezio, S, Norman, L. Wind energy in Europe. Wind Engineering 1992; 16: 35–47.
  • [5] Hamed, S, Pooria, A, Ali, S. Aerodynamic performance enhancement of horizontal axis wind turbines by dimples on blades: Numerical investigation. Energy 2020; 195: 117056. DOI: 10.1016/j.energy.2020.117056.
  • [6] Eleni, D, Dionissios, M. Aerodynamic performance investigation under the influence of heavy rain of a NACA 0012 airfoil for wind turbine applications. International Review of Mechanical Engineering 2012; 6: 1228–1235. DOI:10.15866/ireme.v6i6.20761.
  • [7] Bili, S, Gaguk, J, Muh, K. Characteristic analysis of horizontal axis wind turbine using airfoil NACA 4712. Journal of Mechanical Engineering Science and Technology 2019; 3: 96–108. DOI: 10.17977/um016v3i22019p096.
  • [8] Jureczko, M, Pawlak, M, Mȩzyk, A. Optimisation of wind turbine blades. Journal of Material Processing Technology 2005: 167: 463–471. DOI: 10.1016/j.jmatprotec.2005.06.055.
  • [9] Ernesto, B, Andrea, T. Optimal design of horizontal-axis wind turbines using blade-element theory and evolutionary computation. Journal of Solar Energy Engineering 2002: 124: 357–363. DOI: 10.1115/1.1510868.
  • [10] Thang, Le-Duc, Quoc-Hung, N. Aerodynamic optimal design for horizontal axis wind turbine airfoil using integrated optimization method. International Journal of Computational Methods 2019; 16: 1–15. DOI: 10.1142/S0219876218410049.
  • [11] Sang-Lae, L, Sang, S. Structural design optimization of a wind turbine blade using the genetic algorithm. Engineering Optimization 2021. DOI: 10.1080/0305215X.2021.1973450.
  • [12] Grasso, F. Usage of numerical optimization in wind turbine airfoil design. Journal of Aircraft 2011; 48: 248–255, DOI: 10.2514/1.C031089.
  • [13] Chaudhary, K, Roy, A. Design and optimization of a small wind turbine blade for operation at low wind speed. World Journal of Engineering 2015; 12: 83–94. DOI: 10.1260/1708-5284.12.1.83.
  • [14] Haci, S, Ismail, B. Calculation of optimum angle of attack to determine maximum lift to drag ratio of NACA 632-215 airfoil. Journal of Multidisciplinary Engineering Science and Technology 2015; 2: 1103–1108.
  • [15] Mehmet, B, Sezayi, Y. Theoretical and computational investigations of the optimal tip-speed ratio of horizontal-axis wind turbines. Engineering Science and Technology, an International Journal 2018; 21: 1128–1142. DOI: 10.1016/j.jestch.2018.05.006.
  • [16] Ribeiro, A. F. P, Awruch, A. M, Gomes, H. M. An airfoil optimization technique for wind turbines. Applied Mathematical Modelling 2012; 36: 4898–4907. DOI: 10.1016/j.apm.2011.12.026.
  • [17] Yang, Y, Chun, L, Wanfu, Z, Jun, Y, Zhou, Y, Weipao, M, Kehua, Y. A multi-objective optimization for HAWT blades design by considering structural strength. Journal of Mechanical Science and. Technology 2016; 30: 3693–3703, DOI: 10.1007/s12206-016-0731-3.
  • [18] Jerson Rogério Pinheiro,V, João Tavares, P, André Luiz Amarante, M. An extension of BEM method applied to horizontal-axis wind turbine design. Renewable Energy 2011; 36: 1734–1740. DOI: 10.1016/j.renene.2010.11.018.
  • [19] Hua, Y, Wen, S, Haoran, X, Zedong, H, Chao, L. Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD. Renewable Energy 2014; 70: 107–115. DOI: 10.1016/j.renene.2014.05.002.
  • [20] Tenguria, N, Mittal, N, Ahmed, S. Investigation of blade performance of horizontal axis wind turbine based on blade element momentum theory (BEMT) using NACA airfoils. International Journal of Engineering, Science and Technology 2010; 2: 25–35. DOI: 10.4314/ijest.v2i12.64565.
  • [21] Jie, Z, Xin, C, Pan, P, Rongrong, G. Multi-objective structural optimization design of horizontal-axis wind turbine blades using the non-dominated sorting genetic algorithm II and finite element method. Energies 2014; 7: 988–1002. DOI: 10.3390/en7020988.
  • [22] Muhammad, M, Abdur, R, Muhammad, I, Mustansar, S, Noor, R. Design optimization and analysis of rotor blade for horizontal-axis wind turbine using Q-Blade software. Pakistan Journal of Science and Industrial Research Series A Physical Sciences 2021; 64: 65–75.
  • [23] Padmanabhan, K, Saravanan, R. Study of the performance and robustness of NREL and NACA 2D blade profiles for wind turbine applications. European Journal of Scientific Research 2012; 11: 59–72.
  • [24] Bhadake, P. G, Gore, V. G. A Review on Aerodynamic Analysis of Horizontal Axis Wind Turbine Blade Using CFD Technique. International Journal of Engineering and Applied Sciences 2016; 3: 16–18.
  • [25] Mulugeta, A, Gerawork, A. Aerodynamic design of horizontal axis wind turbine blades. FME Transactions 2017; 45: 647–660. DOI: 10.5937/fmet1704647M.
  • [26] Han, C. Aerodynamics analysis of small horizontal axis wind turbine blades by using 2D and 3D CFD modelling. MSc, University of Central Lancashire, Preston, England, 2011.
  • [27] Carlo C. CFD-RANS study of horizontal axis wind turbines. PhD, University of Cagliari, Cagliari, Italy, 2008.
  • [28] Mingwei, G, De, T, Ying, D. Reynolds number effect on the optimization of a wind turbine blade for maximum aerodynamic efficiency. Journal Energy Engineering 2016; 142: 04014056. DOI: 10.1061/(asce)ey.1943-7897.0000254.
  • [29] Getahun T. Design and testing of a composite material for modelling wind turbine blade structures in a tropical region. PhD, University of KwaZulu-Natal, Durban, South Africa, 2018.
  • [30] Manwell, J. F, McGowan, J. G. Wind energy explained theory, design and application. West Sussex, United Kingdom: A John Wiley and Sons Ltd Publication, 2009.
  • [31] Morgado, J, Vizinho, R, Silvestre, R, Páscoa, C. XFOIL vs CFD performance predictions for high lift low Reynolds number airfoils. Aerospace Science and Technology 2016; 52: 207–214. DOI: 10.1016/j.ast.2016.02.031.
  • [32] Mustafa, Y, Hasan, K, Erkan, Ç, Ziya, C. A comparative CFD analysis of NACA0012 and NACA4412 airfoils. Journal of Energy System 2018; 2: 145–159. DOI: 10.30521/jes.454193.
  • [33] Mostafa, F, Mahdi, A, Omid, N, Ali, M, Kyung, K. Aerodynamic performance improvement of wind turbine blade by cavity shape optimization. Renewable Energy 2019; 132: 773–785. DOI: 10.1016/j.renene.2018.08.047.
  • [34] Zhou, T, Cao, H, Zhang, M, Liao, C. Performance simulation of wind turbine with optimal designed trailing-edge serrations. Energy 2022; 243: 122998. DOI: 10.1016/j.energy.2021.122998.
  • [35] Yang, K. Geometry design optimization of a wind turbine blade considering effects on aerodynamic performance by linearization. Energies 2020; 13: 2320. DOI: 10.3390/en13092320.
  • [36] Akay, B, Ragni, D, Ferreira, S, Van Bussel, W. Experimental investigation of the root flow in a horizontal axis wind turbine. Wind Energy 2014; 17: 1093–1109. DOI: 10.1002/we.1620.
  • [37] Peter, S, Richard, C. Wind turbine blade design. Energies 2012; 5: 3425–3449. DOI: 10.3390/en5093425.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Getahun Tefera 0000-0001-8415-002X

Glen Bright Bu kişi benim 0000-0003-4386-0329

Sarp Adali 0000-0003-1781-1531

Yayımlanma Tarihi 30 Eylül 2022
Kabul Tarihi 15 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 6 Sayı: 3

Kaynak Göster

Vancouver Tefera G, Bright G, Adali S. Theoretical and computational studies on the optimal positions of NACA airfoils used in horizontal axis wind turbine blades. JES. 2022;6(3):369-86.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Creative Commons License JES is licensed to the public under a Creative Commons Attribution 4.0 license.