Research Article
BibTex RIS Cite

Demagnetization effects of surface-mounted permanent magnet synchronous wind generator

Year 2024, Volume: 8 Issue: 1, 63 - 74, 31.03.2024

Abstract

To prevent fossil resources from being depleted and protect the natural balance, renewable resources come to the forefront as an alternative to fossil resources. Wind energy resources, among the renewable energy resources, are important in terms of ensuring the reliability of energy and the use of their resources. Generators are the most important components for the conversion of wind power. Permanent magnet synchronous generators (PMSGs) are preferred in wind turbines since they have high efficiency and high volume/torque densities, thereby optimization of the PMSGs is an important topic for the wind energy community. On the one hand, these machines can cause problems due to overheating and mechanical friction during their long-time operation. To identify the performance lack of the machines due to the de-magnetization faults, systematic work has been performed. When a magnet of a PMSG is de-magnetized at different rates (i.e. 33%, 50%, and 100%), we have explored the artifacts in the electric generation. Besides, the torque performances of the generator at rated load are examined and the flux density distributions are revealed. The rated torque decreased substantially when the demagnetization rate of the magnet increased.

References

  • [1] Olabi, AG, Abdelkareem, MA. Renewable energy and climate change. Renewable and Sustainable Energy Reviews. 2022; 158, 112111, DOI: 10.1016/j.rser.2022.112111.
  • [2] Jiang, Q, Zeng, X, Li, B, Wang, S, Liu, T, Chen, Z, Wang, T, Zhang, M. Time-Sharing frequency coordinated control strategy for PMSG-Based wind turbine. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2022; 12(1): 268-278, DOI: 10.1109/JETCAS.2022.3152796.
  • [3] Dai, LV. Development of converter configuration and corresponding control strategy for wind turbines using permanent magnet synchronous generator: A Case study. Journal of Energy Systems 2022; 6(4): 484-502, DOI: 10.30521/jes.1025810.
  • [4] Abo-Khalil, AG, Alobaid, M. Optimized Control for PMSG Wind Turbine Systems under Unbalanced and Distorted Grid Voltage Scenarios. Sustainability 2023; 15(12):1-21, 9552, DOI: 10.3390/su15129552.
  • [5] Acosta-Silva, Yd-J, Torres-Pacheco, I, Matsumoto, Y, Toledano-Ayala, M, Soto-Zarazúa, GM, Zelaya-Ángel, O, Méndez-López, A. Applications of solar and wind renewable energy in agriculture: A review. Science Progress 2019;102(2): 127-140, DOI: 10.1177/0036850419832696
  • [6] Huang, S, Wang, J, Huang, C, Zhou, L, Xiong, L, Liu, J, Li, P. A fixed-time fractional-order sliding mode control strategy for power quality enhancement of PMSG wind turbine. International Journal of Electrical Power & Energy Systems 2022, 134, 107354, DOI: 10.1016/j.ijepes.2021.107354.
  • [7] Verma P, Misra H, Rajpurohit BS. Design and Analysis of Interior PMSM for Low Power EV Applications in Hilly Terrain. In: IEEE 10th Power India International Conference, New Delhi, India, 25-27 November 2022.
  • [8] Ruiz-Ponce, G, Arjona, MA, Hernandez, C, Escarela-Perez, R. A Review of Magnetic Gear Technologies Used in Mechanical Power Transmission. Energies, 2023; 16(4), 1721, DOI: 10.3390/en16041721.
  • [9] Nath, AG, Udmale, SS, Singh, SK. Role of artificial intelligence in rotor fault diagnosis: A comprehensive review. Artificial Intelligence Review 2021; 54: 2609-2668, DOI: 10.1007/s10462-020-09910-w.
  • [10] Faiz, J, Nejadi-Koti, K. Demagnetization Fault Indexes in Permanent Magnet Synchronous Motors—An Overview. IEEE Transactions on Magnetics 2016; 52(4), 8201511, DOI: 10.1109/TMAG.2015.2480379.
  • [11] Ruiz, JRR, Rosero, JA, Espinosa, AG, Romeral, L. Detection of Demagnetization Faults in Permanent-Magnet Synchro-nous Motors Under Nonstationary Conditions. IEEE Transactions on Magnetics 2009; 45(7): 2961- 2969, DOI: 10.1109/TMAG.2009.2015942.
  • [12] Rosero JA, Cusido J, Garcia A, Ortega JA, Romeral L. Study on the permanent magnet demagnetization fault in permanent magnet synchronous machines. In IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, Paris, France, 06-10 November 2006, Shanghai, China, 26-28 July 2021, pp. 879-884.
  • [13] Song, J, Zhao, J, Dong, F, Zhao, J, Xu, L, Yao, Z. A new demagnetization fault recognition and classification method for DPMSLM. IEEE Transactions on Industrial Informatics 2020; 16(3): 1559-1570, DOI: 10.1109/TII.2019.2928008.
  • [14] Ebrahimi, M, Verij Kazemi, M, Gholamian, SA. Detection of partial demagnetization fault in wind turbine permanent magnet generator using a data-driven method. Electric Power Components and Systems 2022; 50(9-10): 530-537, DOI: 10.1080/15325008.2022.2136789.
  • [15] Pietrzak, P, Wolkiewicz, M. Demagnetization Fault Diagnosis of Permanent Magnet Synchronous Motors Based on Stator Current Signal Processing and Machine Learning Algorithms. Sensors 2023; 23(4), 1757, DOI: 10.3390/s23041757.
  • [16] Skowron, M, Orlowska-Kowalska, T, Kowalski, CT. Detection of permanent magnet damage of PMSM drive based on direct analysis of the stator phase currents using convolutional neural network. IEEE Transactions on Industrial Electronics 2022, 69(12), 13665-13675, DOI: 10.1109/TIE.2022.3146557.
  • [17] Skowron M, Kowalski CT. Permanent Magnet Synchronous Motor Fault Detection System Based on Transfer Learning Method. In IECON 2022–48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium, 17-20 October 2022, pp. 1-6.
  • [18] Urresty, JC, Riba, JR, Delgado, M, Romeral, L. Detection of demagnetization faults in surface-mounted permanent magnet synchronous motors by means of the zero-sequence voltage component. IEEE Transactions on Energy Conversion 2012; 27(1): 42-51, DOI: 10.1109/TEC.2011.2176127.
  • [19] Ruschetti, C, Verucchi, C, Bossio, G, De Angelo, C, García, G. Rotor demagnetization effects on permanent magnet synchronous machines. Energy Conversion and Management 2013; 74: 1-8, DOI: 10.1016/j.enconman.2013.05.001.
  • [20] Huang, F, Zhang, X, Qin, G, Xie, J, Peng, J, Huang, S, Long, Z, Tang, Y. Demagnetization fault diagnosis of permanent magnet synchronous motors using magnetic leakage signals. IEEE Transactions on Industrial Informatics 2023; 19(4): 6105-6116, DOI: 10.1109/TII.2022.3165283.
  • [21] Sharouni, S, Naderi, P, Hedayati, M, Hajihosseini, P. Demagnetization fault detection by a novel and flexible modeling method for outer rotor permanent magnet synchronous machine. International Journal of Electrical Power & Energy Systems 2020;116, 105539, DOI: 10.1016/j.ijepes.2019.105539.
  • [22] Jia Y, Du Y, Wang Y, Zhang B, Cao W, Ren Y, Li C. Finite Element Simulation on Irreversible Demagnetization of Permanent Magnet Synchronous Generator. In 9th International Conference on Condition Monitoring and Diagnosis, Kita-kyushu, Japan, 13-18 November 2022, pp. 408-412.
  • [23] Ishikawa, T, Igarashi, N. Failure diagnosis of demagnetization in interior permanent magnet synchronous motors using vibration characteristics. Applied Sciences 2019; 9(15), 3111, DOI: 10.3390/app9153111.
  • [24] Gör, H, Kurt E. Preliminary studies of a new permanent magnet generator (PMG) with the axial and radial flux morphology. International Journal of Hydrogen Energy 2016; 41(17): 7005-7018, DOI: 10.1016/j.ijhydene.2015.12.195.
  • [25] Gör, H, Kurt, E. Effects of Back Iron Components on Efficiency and Generated Power for New Wind Energy Generators, Electric Power Components and Systems 2018; 46(10): 1105-1122, DOI: 10.1080/15325008.2018.1488013.
  • [26] Bouloukza, I, Mordjaoui, M, Kurt, E, Bal, G, Ökmen, C. Electromagnetic design of a new radial flux permanent magnet motor. Journal of Energy Systems 2018; 2(1): 13-27, DOI: 10.30521/jes.397836.
  • [27] İlbaş, M, Demirci, M, Kurt, E. Modeling and experimental validation of flow phenomena for optimum rotor blades of a new type permanent magnet generator. SN Applied Sciences 2019; 1, 1544, DOI: 10.1007/s42452-019-1590-1.
  • [28] Tawfiq, KB, Mansour, AS, Ramadan, HS, Becherif, M, El-Kholy, EE. Wind energy conversion system topologies and converters: Comparative review. Energy Procedia 2019; 162: 38-47, DOI:10.1016/j.egypro.2019.04.005.
  • [29] Polinder, H, Van der Pijl, FF, De Vilder, GJ, Tavner, PJ. Comparison of direct-drive and geared generator concepts for wind turbines. IEEE Transactions on Energy Conversion 2006; 21(3):725-733, DOI: 10.1109/TEC.2006.875476.
  • [30] Özdemir MS, Ocak C, Dalcalı A. Permanent magnet wind generators: neodymium vs. Ferrite magnets. In 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications, Ankara, Turkey, 11-13 June 2021, pp. 1-6.
  • [31] Mahmoud, MM, Salama, HS, Aly, MM, Abdel-Rahim, AMM. Design and implementation of FLC system for fault ride-through capability enhancement in PMSG-wind systems. Wind Eng., 2021;45(5): 1361-1373, DOI: 1 0.1177/0309524X20981773.
  • [32]Kurt, E, Gör, H, Çelik, K. Optimization of a 3-kW axial flux permanent magnet generator with variable air gap. International Transactions on Electrical Energy Systems 2021; 31(11), e13074, DOI: 10.1002/2050-7038.13074.
  • [33] Upadhyay K.G. Design of electrical machines. New Age International, New Delhi, 2008.
  • [34] Duan, Y. Method for design and optimization of surface mount permanent magnet machines and induction machines. PhD diss., Georgia Institute of Technology, Atlanta, 2010.
  • [35] Toliyat HA, Nandi S, Choi S, Meshgin-Kelk H. Electric Machines Modeling, Condition Monitoring, and Fault Diagnosis, CRC Press, Taylor & Francis Group, 2013.
  • [36] Henao, H, Capolino, GA, Fernandez-Cabanas, M, Filippetti, F, Bruzzese, C, Strangas, E, Pusca, R, Estima, J, Riera-Guasp, M, Hedayati-Kia, S. Trends in fault diagnosis for electrical machines: A review of diagnostic techniques. IEEE Industrial Electronics Magazine 2014; 8(2): 31-42, DOI: 10.1109/MIE.2013.2287651.
  • [37] Strnat, KJ. Modern permanent magnets for applications in electro-technology. Proceedings of the IEEE, 1990, 78(6), pp. 923-946.
  • [38] Jeong, CL, Hur, J. Optimization design of PMSM with hybrid-type permanent magnet considering irreversible demagnetization. IEEE Transactions on Magnetics 2017; 53(11): 1-4, DOI: 10.1109/TMAG.2017.2707102.
  • [39] Ma, BM, Herchenroeder, JW, Smith, B, Suda, M, Brown, DN, Chen, Z. Recent development in bonded NdFeB magnets. Journal of Magnetism and Magnetic Materials 2002; 239(1-3): 418-423, DOI:10.1016/S0304-8853(01)00609-6.
  • [40] Dalcalı, A, Ocak, C. Effect of Different Magnet Materials on The Performance of Surface Mounted Direct Drive PMSM. Journal of Awareness, 2018; 3: 217-224.
  • [41] Moosavi, SS, Djerdir, A, Amirat, YA, Khaburi, DA. Demagnetization fault diagnosis in permanent magnet synchronous motors: A review of the state-of-the-art. Journal of Magnetism and Magnetic Materials 2015; 391: 203-212, DOI: 10.1016/j.jmmm.2015.04.062.
  • [42] Ebrahimi, BM, Faiz, J. Demagnetization fault diagnosis in surface mounted permanent magnet synchronous motors. IEEE Transactions on Magnetics 2013; 49(3): 1185-1192, DOI: 10.1109/TMAG.2012.2217978.
  • [43] Espinosa, AG, Rosero, JA, Cusido, J, Romeral, L, Ortega, JA. Fault detection by means of Hilbert–Huang transform of the stator current in a PMSM with demagnetization. IEEE Transactions on Energy Conversion 2010; 25(2): 312-318, DOI: 10.1109/TEC.2009.2037922.
  • [44] Faiz, J, Mazaheri-Tehrani, E. Demagnetization modeling and fault diagnosing techniques in permanent magnet machines under stationary and nonstationary conditions: An overview. IEEE Transactions on Industry Applications 2017; 53(3): 2772-2785, DOI: 10.1109/TIA.2016.2608950.
  • [45] Park, Y, Yang, C, Lee, SB, Lee, DM, Fernandez, D, Reigosa, D, Briz, F. Online detection and classification of rotor and load defects in PMSMs based on hall sensor measurements. IEEE Transactions on Industry Applications 2019; 55(4): 3803-3812, DOI: 10.1109/TIA.2019.2911252.
  • [46] Wang, CS, Kao, IH, Perng, JW. Fault Diagnosis and Fault Frequency Determination of Permanent Magnet Synchronous Motor Based on Deep Learning. Sensors 2021; 21, 3608, DOI: 10.3390/s21113608.
  • [47] Dalcalı, A, Akbaba, M. Comparison of the performance of bridge and bridgeless shaded pole induction motors using FEM. International Journal of Applied Electromagnetics and Mechanics 2017; 54(3): 341-350, DOI: 10.3233/JAE-160133.
  • [48] Qi, J, Zhu, Z, Yan, L, Jewell, GW, Gan, C, Ren, Y, Brockway, S, Hilton, C. Influence of Armature Reaction on Electromagnetic Performance and Pole Shaping Effect in Consequent Pole PM Machines. Energies 2023; 16(4): 1982, DOI: 10.3390/en16041982.
  • [49] Gongal, D, Thakur, S, Panse, A, Shankarrao, P, Stark, JA, Hetling, JR, Ozgen, B, Foster, CD. Thermal finite element analysis of localized hypothermia treatment of the human eye. Med. Eng. Phys., 2023; 111, 103928, DOI: 10.1016/j.medengphy.2022.103928.
  • [50] Moon, J, Chang, H, Lee, J, Kim, CW. Prediction of Internal Circuit and Mechanical-Electrical-Thermal Response of Lithium-Ion Battery Cell with Mechanical-Thermal Coupled Analysis. Energies 2022; 15(3), 929, DOI: 10.3390/en15030929.
Year 2024, Volume: 8 Issue: 1, 63 - 74, 31.03.2024

Abstract

References

  • [1] Olabi, AG, Abdelkareem, MA. Renewable energy and climate change. Renewable and Sustainable Energy Reviews. 2022; 158, 112111, DOI: 10.1016/j.rser.2022.112111.
  • [2] Jiang, Q, Zeng, X, Li, B, Wang, S, Liu, T, Chen, Z, Wang, T, Zhang, M. Time-Sharing frequency coordinated control strategy for PMSG-Based wind turbine. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2022; 12(1): 268-278, DOI: 10.1109/JETCAS.2022.3152796.
  • [3] Dai, LV. Development of converter configuration and corresponding control strategy for wind turbines using permanent magnet synchronous generator: A Case study. Journal of Energy Systems 2022; 6(4): 484-502, DOI: 10.30521/jes.1025810.
  • [4] Abo-Khalil, AG, Alobaid, M. Optimized Control for PMSG Wind Turbine Systems under Unbalanced and Distorted Grid Voltage Scenarios. Sustainability 2023; 15(12):1-21, 9552, DOI: 10.3390/su15129552.
  • [5] Acosta-Silva, Yd-J, Torres-Pacheco, I, Matsumoto, Y, Toledano-Ayala, M, Soto-Zarazúa, GM, Zelaya-Ángel, O, Méndez-López, A. Applications of solar and wind renewable energy in agriculture: A review. Science Progress 2019;102(2): 127-140, DOI: 10.1177/0036850419832696
  • [6] Huang, S, Wang, J, Huang, C, Zhou, L, Xiong, L, Liu, J, Li, P. A fixed-time fractional-order sliding mode control strategy for power quality enhancement of PMSG wind turbine. International Journal of Electrical Power & Energy Systems 2022, 134, 107354, DOI: 10.1016/j.ijepes.2021.107354.
  • [7] Verma P, Misra H, Rajpurohit BS. Design and Analysis of Interior PMSM for Low Power EV Applications in Hilly Terrain. In: IEEE 10th Power India International Conference, New Delhi, India, 25-27 November 2022.
  • [8] Ruiz-Ponce, G, Arjona, MA, Hernandez, C, Escarela-Perez, R. A Review of Magnetic Gear Technologies Used in Mechanical Power Transmission. Energies, 2023; 16(4), 1721, DOI: 10.3390/en16041721.
  • [9] Nath, AG, Udmale, SS, Singh, SK. Role of artificial intelligence in rotor fault diagnosis: A comprehensive review. Artificial Intelligence Review 2021; 54: 2609-2668, DOI: 10.1007/s10462-020-09910-w.
  • [10] Faiz, J, Nejadi-Koti, K. Demagnetization Fault Indexes in Permanent Magnet Synchronous Motors—An Overview. IEEE Transactions on Magnetics 2016; 52(4), 8201511, DOI: 10.1109/TMAG.2015.2480379.
  • [11] Ruiz, JRR, Rosero, JA, Espinosa, AG, Romeral, L. Detection of Demagnetization Faults in Permanent-Magnet Synchro-nous Motors Under Nonstationary Conditions. IEEE Transactions on Magnetics 2009; 45(7): 2961- 2969, DOI: 10.1109/TMAG.2009.2015942.
  • [12] Rosero JA, Cusido J, Garcia A, Ortega JA, Romeral L. Study on the permanent magnet demagnetization fault in permanent magnet synchronous machines. In IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, Paris, France, 06-10 November 2006, Shanghai, China, 26-28 July 2021, pp. 879-884.
  • [13] Song, J, Zhao, J, Dong, F, Zhao, J, Xu, L, Yao, Z. A new demagnetization fault recognition and classification method for DPMSLM. IEEE Transactions on Industrial Informatics 2020; 16(3): 1559-1570, DOI: 10.1109/TII.2019.2928008.
  • [14] Ebrahimi, M, Verij Kazemi, M, Gholamian, SA. Detection of partial demagnetization fault in wind turbine permanent magnet generator using a data-driven method. Electric Power Components and Systems 2022; 50(9-10): 530-537, DOI: 10.1080/15325008.2022.2136789.
  • [15] Pietrzak, P, Wolkiewicz, M. Demagnetization Fault Diagnosis of Permanent Magnet Synchronous Motors Based on Stator Current Signal Processing and Machine Learning Algorithms. Sensors 2023; 23(4), 1757, DOI: 10.3390/s23041757.
  • [16] Skowron, M, Orlowska-Kowalska, T, Kowalski, CT. Detection of permanent magnet damage of PMSM drive based on direct analysis of the stator phase currents using convolutional neural network. IEEE Transactions on Industrial Electronics 2022, 69(12), 13665-13675, DOI: 10.1109/TIE.2022.3146557.
  • [17] Skowron M, Kowalski CT. Permanent Magnet Synchronous Motor Fault Detection System Based on Transfer Learning Method. In IECON 2022–48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium, 17-20 October 2022, pp. 1-6.
  • [18] Urresty, JC, Riba, JR, Delgado, M, Romeral, L. Detection of demagnetization faults in surface-mounted permanent magnet synchronous motors by means of the zero-sequence voltage component. IEEE Transactions on Energy Conversion 2012; 27(1): 42-51, DOI: 10.1109/TEC.2011.2176127.
  • [19] Ruschetti, C, Verucchi, C, Bossio, G, De Angelo, C, García, G. Rotor demagnetization effects on permanent magnet synchronous machines. Energy Conversion and Management 2013; 74: 1-8, DOI: 10.1016/j.enconman.2013.05.001.
  • [20] Huang, F, Zhang, X, Qin, G, Xie, J, Peng, J, Huang, S, Long, Z, Tang, Y. Demagnetization fault diagnosis of permanent magnet synchronous motors using magnetic leakage signals. IEEE Transactions on Industrial Informatics 2023; 19(4): 6105-6116, DOI: 10.1109/TII.2022.3165283.
  • [21] Sharouni, S, Naderi, P, Hedayati, M, Hajihosseini, P. Demagnetization fault detection by a novel and flexible modeling method for outer rotor permanent magnet synchronous machine. International Journal of Electrical Power & Energy Systems 2020;116, 105539, DOI: 10.1016/j.ijepes.2019.105539.
  • [22] Jia Y, Du Y, Wang Y, Zhang B, Cao W, Ren Y, Li C. Finite Element Simulation on Irreversible Demagnetization of Permanent Magnet Synchronous Generator. In 9th International Conference on Condition Monitoring and Diagnosis, Kita-kyushu, Japan, 13-18 November 2022, pp. 408-412.
  • [23] Ishikawa, T, Igarashi, N. Failure diagnosis of demagnetization in interior permanent magnet synchronous motors using vibration characteristics. Applied Sciences 2019; 9(15), 3111, DOI: 10.3390/app9153111.
  • [24] Gör, H, Kurt E. Preliminary studies of a new permanent magnet generator (PMG) with the axial and radial flux morphology. International Journal of Hydrogen Energy 2016; 41(17): 7005-7018, DOI: 10.1016/j.ijhydene.2015.12.195.
  • [25] Gör, H, Kurt, E. Effects of Back Iron Components on Efficiency and Generated Power for New Wind Energy Generators, Electric Power Components and Systems 2018; 46(10): 1105-1122, DOI: 10.1080/15325008.2018.1488013.
  • [26] Bouloukza, I, Mordjaoui, M, Kurt, E, Bal, G, Ökmen, C. Electromagnetic design of a new radial flux permanent magnet motor. Journal of Energy Systems 2018; 2(1): 13-27, DOI: 10.30521/jes.397836.
  • [27] İlbaş, M, Demirci, M, Kurt, E. Modeling and experimental validation of flow phenomena for optimum rotor blades of a new type permanent magnet generator. SN Applied Sciences 2019; 1, 1544, DOI: 10.1007/s42452-019-1590-1.
  • [28] Tawfiq, KB, Mansour, AS, Ramadan, HS, Becherif, M, El-Kholy, EE. Wind energy conversion system topologies and converters: Comparative review. Energy Procedia 2019; 162: 38-47, DOI:10.1016/j.egypro.2019.04.005.
  • [29] Polinder, H, Van der Pijl, FF, De Vilder, GJ, Tavner, PJ. Comparison of direct-drive and geared generator concepts for wind turbines. IEEE Transactions on Energy Conversion 2006; 21(3):725-733, DOI: 10.1109/TEC.2006.875476.
  • [30] Özdemir MS, Ocak C, Dalcalı A. Permanent magnet wind generators: neodymium vs. Ferrite magnets. In 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications, Ankara, Turkey, 11-13 June 2021, pp. 1-6.
  • [31] Mahmoud, MM, Salama, HS, Aly, MM, Abdel-Rahim, AMM. Design and implementation of FLC system for fault ride-through capability enhancement in PMSG-wind systems. Wind Eng., 2021;45(5): 1361-1373, DOI: 1 0.1177/0309524X20981773.
  • [32]Kurt, E, Gör, H, Çelik, K. Optimization of a 3-kW axial flux permanent magnet generator with variable air gap. International Transactions on Electrical Energy Systems 2021; 31(11), e13074, DOI: 10.1002/2050-7038.13074.
  • [33] Upadhyay K.G. Design of electrical machines. New Age International, New Delhi, 2008.
  • [34] Duan, Y. Method for design and optimization of surface mount permanent magnet machines and induction machines. PhD diss., Georgia Institute of Technology, Atlanta, 2010.
  • [35] Toliyat HA, Nandi S, Choi S, Meshgin-Kelk H. Electric Machines Modeling, Condition Monitoring, and Fault Diagnosis, CRC Press, Taylor & Francis Group, 2013.
  • [36] Henao, H, Capolino, GA, Fernandez-Cabanas, M, Filippetti, F, Bruzzese, C, Strangas, E, Pusca, R, Estima, J, Riera-Guasp, M, Hedayati-Kia, S. Trends in fault diagnosis for electrical machines: A review of diagnostic techniques. IEEE Industrial Electronics Magazine 2014; 8(2): 31-42, DOI: 10.1109/MIE.2013.2287651.
  • [37] Strnat, KJ. Modern permanent magnets for applications in electro-technology. Proceedings of the IEEE, 1990, 78(6), pp. 923-946.
  • [38] Jeong, CL, Hur, J. Optimization design of PMSM with hybrid-type permanent magnet considering irreversible demagnetization. IEEE Transactions on Magnetics 2017; 53(11): 1-4, DOI: 10.1109/TMAG.2017.2707102.
  • [39] Ma, BM, Herchenroeder, JW, Smith, B, Suda, M, Brown, DN, Chen, Z. Recent development in bonded NdFeB magnets. Journal of Magnetism and Magnetic Materials 2002; 239(1-3): 418-423, DOI:10.1016/S0304-8853(01)00609-6.
  • [40] Dalcalı, A, Ocak, C. Effect of Different Magnet Materials on The Performance of Surface Mounted Direct Drive PMSM. Journal of Awareness, 2018; 3: 217-224.
  • [41] Moosavi, SS, Djerdir, A, Amirat, YA, Khaburi, DA. Demagnetization fault diagnosis in permanent magnet synchronous motors: A review of the state-of-the-art. Journal of Magnetism and Magnetic Materials 2015; 391: 203-212, DOI: 10.1016/j.jmmm.2015.04.062.
  • [42] Ebrahimi, BM, Faiz, J. Demagnetization fault diagnosis in surface mounted permanent magnet synchronous motors. IEEE Transactions on Magnetics 2013; 49(3): 1185-1192, DOI: 10.1109/TMAG.2012.2217978.
  • [43] Espinosa, AG, Rosero, JA, Cusido, J, Romeral, L, Ortega, JA. Fault detection by means of Hilbert–Huang transform of the stator current in a PMSM with demagnetization. IEEE Transactions on Energy Conversion 2010; 25(2): 312-318, DOI: 10.1109/TEC.2009.2037922.
  • [44] Faiz, J, Mazaheri-Tehrani, E. Demagnetization modeling and fault diagnosing techniques in permanent magnet machines under stationary and nonstationary conditions: An overview. IEEE Transactions on Industry Applications 2017; 53(3): 2772-2785, DOI: 10.1109/TIA.2016.2608950.
  • [45] Park, Y, Yang, C, Lee, SB, Lee, DM, Fernandez, D, Reigosa, D, Briz, F. Online detection and classification of rotor and load defects in PMSMs based on hall sensor measurements. IEEE Transactions on Industry Applications 2019; 55(4): 3803-3812, DOI: 10.1109/TIA.2019.2911252.
  • [46] Wang, CS, Kao, IH, Perng, JW. Fault Diagnosis and Fault Frequency Determination of Permanent Magnet Synchronous Motor Based on Deep Learning. Sensors 2021; 21, 3608, DOI: 10.3390/s21113608.
  • [47] Dalcalı, A, Akbaba, M. Comparison of the performance of bridge and bridgeless shaded pole induction motors using FEM. International Journal of Applied Electromagnetics and Mechanics 2017; 54(3): 341-350, DOI: 10.3233/JAE-160133.
  • [48] Qi, J, Zhu, Z, Yan, L, Jewell, GW, Gan, C, Ren, Y, Brockway, S, Hilton, C. Influence of Armature Reaction on Electromagnetic Performance and Pole Shaping Effect in Consequent Pole PM Machines. Energies 2023; 16(4): 1982, DOI: 10.3390/en16041982.
  • [49] Gongal, D, Thakur, S, Panse, A, Shankarrao, P, Stark, JA, Hetling, JR, Ozgen, B, Foster, CD. Thermal finite element analysis of localized hypothermia treatment of the human eye. Med. Eng. Phys., 2023; 111, 103928, DOI: 10.1016/j.medengphy.2022.103928.
  • [50] Moon, J, Chang, H, Lee, J, Kim, CW. Prediction of Internal Circuit and Mechanical-Electrical-Thermal Response of Lithium-Ion Battery Cell with Mechanical-Thermal Coupled Analysis. Energies 2022; 15(3), 929, DOI: 10.3390/en15030929.
There are 50 citations in total.

Details

Primary Language English
Subjects Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics)
Journal Section Research Articles
Authors

Adem Dalcalı 0000-0002-9940-0471

Erol Kurt 0000-0002-3615-6926

Early Pub Date March 16, 2024
Publication Date March 31, 2024
Acceptance Date December 1, 2023
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

Vancouver Dalcalı A, Kurt E. Demagnetization effects of surface-mounted permanent magnet synchronous wind generator. Journal of Energy Systems. 2024;8(1):63-74.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Journal of Energy Systems is licensed under CC BY-NC 4.0