Floating double boost converter
Year 2025,
Volume: 9 Issue: 1, 85 - 104, 31.03.2025
Felix Hımmelstoss
,
Helmut Votzi
Abstract
The combination of two converters to a dual floating converter is an interesting concept. Here a positive output double floating boost converter is treated. The concept is explained step by step with the help of signal drawings and basic calculations. The fourth order model is derived for large and small signals, idealized components, and can be used to study the converter when it is not built symmetrically. A simpler model of second order is sufficient, when the two converter stages have nearly the same component values. The position of the zeroes and the poles are treated. The turn-on and the soft-start of the converter are also studied. With an additional stage the inrush into the converter can be avoided and the converter can be protected from short-circuit, no load, overheating, and overload. Simulations with the help of LTSpice are presented to validate the considerations. The influence of the parasitic capacitors to ground are studied. Interesting modifications of the converter are shown. Experimental results of a small laboratory converter are presented.
References
- [1] Mohan N, Undeland T, Robbins W. Power Electronics, Converters, Applications and Design. 3rd ed. New York, NY: John Wiley & Sons; 2003.
- [2] Zach F. Leistungselektronik. 6th ed. Frankfurt, Germany: Springer; 2022.
- [3] Rozanov Y, Ryvkin S, Chaplygin E, Voronin P. Power Electronics Basics. Boca Raton, FL: CRC Press; 2016.
- [4] Forouzesh M, Siwakoti YP, Gorji SA, Blaabjerg F, Lehman B. Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications. IEEE Trans Power Electron. 2017;32(12):9143-9178. doi:10.1109/TPEL.2017.2652318.
- [5] Williams BW. Generation and Analysis of Canonical Switching Cell DC-to-DC Converters. IEEE Trans Ind Electron. 2014;61(1):329-346. doi:10.1109/TIE.2013.2240633.
- [6] Cuk S. General topological properties of switching structures. In: IEEE Power Electronics Specialists Conference; 1979; San Diego, CA, USA. p. 109-130.
- [7] Simões MG, Lute CL, Alsaleem AN, Brandao DI, Pomilio JA. Bidirectional floating interleaved buck-boost DC-DC converter applied to residential PV power systems. In: 2015 Clemson University Power Systems Conference (PSC); 2015; Clemson, SC, USA. p. 1-8. doi:10.1109/PSC.2015.7101675.
- [8] Coutellier D, Agelidis VG, Choi S. Experimental verification of floating-output interleaved-input DC-DC high-gain transformer-less converter topologies. In: 2008 IEEE Power Electronics Specialists Conference; 2008; Rhodes, Greece. p. 562-568. doi:10.1109/PESC.2008.4591989.
- [9] Kabalo M, Blunier B, Bouquain D, Miraoui A. Comparison analysis of high voltage ratio low input current ripple floating interleaving boost converters for fuel cell applications. In: 2011 IEEE Vehicle Power and Propulsion Conference; 2011; Chicago, IL, USA. p. 1-6. doi:10.1109/VPPC.2011.6043101.
- [10] Miranda M, Banakar P, Gunnal G, Kiran Kumar V. Robust Voltage Control of Improved Floating Interleaved Boost Converter for Photovoltaic Systems. In: ICCCS 2020 5th International Conference on Computing, Communication and Security; 2020; Patna, India. p. 1-5. doi:10.1109/ICCCS49678.2020.9276866.
- [11] Kabalo M, Paire D, Blunier B, Bouquain DM, Simoes G, Miraoui A. Experimental Validation of High-Voltage-Ratio Low-Input-Current-Ripple Converters for Hybrid Fuel Cell Supercapacitor Systems. IEEE Trans Veh Technol. 2012;61(8):3430-3440. doi:10.1109/TVT.2012.2208132.
- [12] Xu L, et al. Extended State Observer-Based Sliding-Mode Control for Floating Interleaved Boost Converters. In: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society; 2018; Washington, DC, USA. p. 5283-5289. doi:10.1109/IECON.2018.8591138.
- [13] Huangfu Y, Guo L, Ma R, Gao F. An Advanced Robust Noise Suppression Control of Bidirectional DC–DC Converter for Fuel Cell Electric Vehicle. IEEE Trans Transp Electrif. 2019;5(4):1268-1278. doi:10.1109/TTE.2019.2943895.
- [14] Li Q, et al. An Improved Floating Interleaved Boost Converter with the Zero-Ripple Input Current for Fuel Cell Applications. IEEE Trans Energy Convers. 2019;34(4):2168-2179. doi:10.1109/TEC.2019.2936416.
- [15] Li Q, Huangfu Y, Zhao J, Zhuo S, Chen F. Controller design and fault tolerance analysis of 4-phase floating interleaved boost converter for fuel cell electric vehicles. In: IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society; 2017; Beijing, China. p. 7753-7758. doi:10.1109/IECON.2017.8217359.
- [16] Lute CD, Simões MG, Brandao DI, Durra AA, Muyeen SM. Experimental evaluation of an interleaved boost topology optimized for peak power tracking control. In: IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society; 2014; Dallas, TX, USA. p. 2096-2102. doi:10.1109/IECON.2014.7048791.
- [17] Sartipizadeh H, Harirchi F, Babakmehr M, Dehghanian P. Robust Model Predictive Control of DC-DC Floating Interleaved Boost Converter with Multiple Uncertainties. IEEE Trans Energy Convers. 2021;36(2):1403-1412. doi:10.1109/TEC.2021.3058524.
- [18] Lin P, Jiang W, Wang J, Shi D, Zhang C, Wang P. Toward Large-Signal Stabilization of Floating Dual Boost Converter-Powered DC Microgrids Feeding Constant Power Loads. IEEE J Emerg Sel Top Power Electron. 2021;9(1):580-589. doi:10.1109/JESTPE.2019.2956097.
- [19] Lute M, Simões G, Brandao DI, Al Durra A, Muyeen SM. Development of a four phase floating interleaved boost converter for photovoltaic systems. In: ECCE 2014 IEEE Energy Conversion Congress and Exposition; 2014; Pittsburgh, PA, USA. p. 1895-1902. doi:10.1109/ECCE.2014.6953650.
- [20] Himmelstoss FA, Votzi HL. A Floating Double Buck-Boost Converter as Driver for a Permanent Exited DC Machine. In: EDPE 2023 International Conference on Electrical Drives & Power Electronics; 2023. p. 72-77. doi:10.1109/EDPE53134.2021.9604062.
- [21] Himmelstoss FA. Tristate Converters. WSEAS Trans Power Syst. 2023;18:259-269. doi:10.37394/232016.2023.18.27.
- [22] Corak I., & Cetin S., 8 MHz high efficient resonant sepic converter design for led driver of endoscopy systems”, Journal of Polytechnic, 2024;27(2): 461-468, DOI: 10.2339/politeknik.1118158.
Year 2025,
Volume: 9 Issue: 1, 85 - 104, 31.03.2025
Felix Hımmelstoss
,
Helmut Votzi
References
- [1] Mohan N, Undeland T, Robbins W. Power Electronics, Converters, Applications and Design. 3rd ed. New York, NY: John Wiley & Sons; 2003.
- [2] Zach F. Leistungselektronik. 6th ed. Frankfurt, Germany: Springer; 2022.
- [3] Rozanov Y, Ryvkin S, Chaplygin E, Voronin P. Power Electronics Basics. Boca Raton, FL: CRC Press; 2016.
- [4] Forouzesh M, Siwakoti YP, Gorji SA, Blaabjerg F, Lehman B. Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications. IEEE Trans Power Electron. 2017;32(12):9143-9178. doi:10.1109/TPEL.2017.2652318.
- [5] Williams BW. Generation and Analysis of Canonical Switching Cell DC-to-DC Converters. IEEE Trans Ind Electron. 2014;61(1):329-346. doi:10.1109/TIE.2013.2240633.
- [6] Cuk S. General topological properties of switching structures. In: IEEE Power Electronics Specialists Conference; 1979; San Diego, CA, USA. p. 109-130.
- [7] Simões MG, Lute CL, Alsaleem AN, Brandao DI, Pomilio JA. Bidirectional floating interleaved buck-boost DC-DC converter applied to residential PV power systems. In: 2015 Clemson University Power Systems Conference (PSC); 2015; Clemson, SC, USA. p. 1-8. doi:10.1109/PSC.2015.7101675.
- [8] Coutellier D, Agelidis VG, Choi S. Experimental verification of floating-output interleaved-input DC-DC high-gain transformer-less converter topologies. In: 2008 IEEE Power Electronics Specialists Conference; 2008; Rhodes, Greece. p. 562-568. doi:10.1109/PESC.2008.4591989.
- [9] Kabalo M, Blunier B, Bouquain D, Miraoui A. Comparison analysis of high voltage ratio low input current ripple floating interleaving boost converters for fuel cell applications. In: 2011 IEEE Vehicle Power and Propulsion Conference; 2011; Chicago, IL, USA. p. 1-6. doi:10.1109/VPPC.2011.6043101.
- [10] Miranda M, Banakar P, Gunnal G, Kiran Kumar V. Robust Voltage Control of Improved Floating Interleaved Boost Converter for Photovoltaic Systems. In: ICCCS 2020 5th International Conference on Computing, Communication and Security; 2020; Patna, India. p. 1-5. doi:10.1109/ICCCS49678.2020.9276866.
- [11] Kabalo M, Paire D, Blunier B, Bouquain DM, Simoes G, Miraoui A. Experimental Validation of High-Voltage-Ratio Low-Input-Current-Ripple Converters for Hybrid Fuel Cell Supercapacitor Systems. IEEE Trans Veh Technol. 2012;61(8):3430-3440. doi:10.1109/TVT.2012.2208132.
- [12] Xu L, et al. Extended State Observer-Based Sliding-Mode Control for Floating Interleaved Boost Converters. In: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society; 2018; Washington, DC, USA. p. 5283-5289. doi:10.1109/IECON.2018.8591138.
- [13] Huangfu Y, Guo L, Ma R, Gao F. An Advanced Robust Noise Suppression Control of Bidirectional DC–DC Converter for Fuel Cell Electric Vehicle. IEEE Trans Transp Electrif. 2019;5(4):1268-1278. doi:10.1109/TTE.2019.2943895.
- [14] Li Q, et al. An Improved Floating Interleaved Boost Converter with the Zero-Ripple Input Current for Fuel Cell Applications. IEEE Trans Energy Convers. 2019;34(4):2168-2179. doi:10.1109/TEC.2019.2936416.
- [15] Li Q, Huangfu Y, Zhao J, Zhuo S, Chen F. Controller design and fault tolerance analysis of 4-phase floating interleaved boost converter for fuel cell electric vehicles. In: IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society; 2017; Beijing, China. p. 7753-7758. doi:10.1109/IECON.2017.8217359.
- [16] Lute CD, Simões MG, Brandao DI, Durra AA, Muyeen SM. Experimental evaluation of an interleaved boost topology optimized for peak power tracking control. In: IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society; 2014; Dallas, TX, USA. p. 2096-2102. doi:10.1109/IECON.2014.7048791.
- [17] Sartipizadeh H, Harirchi F, Babakmehr M, Dehghanian P. Robust Model Predictive Control of DC-DC Floating Interleaved Boost Converter with Multiple Uncertainties. IEEE Trans Energy Convers. 2021;36(2):1403-1412. doi:10.1109/TEC.2021.3058524.
- [18] Lin P, Jiang W, Wang J, Shi D, Zhang C, Wang P. Toward Large-Signal Stabilization of Floating Dual Boost Converter-Powered DC Microgrids Feeding Constant Power Loads. IEEE J Emerg Sel Top Power Electron. 2021;9(1):580-589. doi:10.1109/JESTPE.2019.2956097.
- [19] Lute M, Simões G, Brandao DI, Al Durra A, Muyeen SM. Development of a four phase floating interleaved boost converter for photovoltaic systems. In: ECCE 2014 IEEE Energy Conversion Congress and Exposition; 2014; Pittsburgh, PA, USA. p. 1895-1902. doi:10.1109/ECCE.2014.6953650.
- [20] Himmelstoss FA, Votzi HL. A Floating Double Buck-Boost Converter as Driver for a Permanent Exited DC Machine. In: EDPE 2023 International Conference on Electrical Drives & Power Electronics; 2023. p. 72-77. doi:10.1109/EDPE53134.2021.9604062.
- [21] Himmelstoss FA. Tristate Converters. WSEAS Trans Power Syst. 2023;18:259-269. doi:10.37394/232016.2023.18.27.
- [22] Corak I., & Cetin S., 8 MHz high efficient resonant sepic converter design for led driver of endoscopy systems”, Journal of Polytechnic, 2024;27(2): 461-468, DOI: 10.2339/politeknik.1118158.