Research Article
BibTex RIS Cite

Karbonizasyon öncesi fosforik asit ve borik asit emdirilmiş kenevir liflerinin termal stabilizasyondaki bekletme sürelerinin yapısal değişimleri üzerine etkisi

Year 2025, Volume: 5 Issue: 2, 720 - 736, 31.07.2025
https://doi.org/10.61112/jiens.1647395

Abstract

Bu çalışma kapsamında; sürdürebilir, doğal ve çevreci yapısı ile gün geçtikçe adından çokça bahsetmeye başlanılan endüstriyel kenevir lifinin endüstri için son derece stratejik bir ürün olan karbon lif olarak üretilmesine yönelik bir dizi çalışmaları konu almaktadır. Endüstriyel kenevir liflerinin termal stabilizasyonunu sağlamak oksijence zengin bir ortamda 250 °C’de 30, 60, 90, 120, 150 ve 180 dakika bekletme sürelerini içeren 6 farklı bekletme sürelerindeki ısıl işlemler gerçekleştirilmiştir. Kimyasal emdirme sonrası ısıl işlem esnasındaki bekletme sürelerinin sonucunda elde edilen numunelerin yapısındaki fiziksel ve kimyasal değişimler; iplik numarası, lif kalınlığı, çakmak ile alev testi, DSC, TGA, FT-IR, X-RD ve SEM ölçümleri ile ortaya konuldu. DSC çalışması, fosforik asit ve borik asit emdirilmiş kenevir liflerinin termal stabilizasyonu bekletme sürelerinin artması ile arttırdığı ve selüloz yapısındaki hidroksil gruplarını bloke ederek uçucu ürünlerin oluşumunu önlediğini gösterdi. TGA termogramları artan bekletme sürelerinde karbon veriminde artış olduğunu gösterdi. XRD sonuçları, bekletme süresinin artmasıyla selüloz II kristal yapısının kaybolduğunu ve amorf bir yapının ortaya çıktığını gösterdi. FT-IR spektrumları, hidroksil gruplarının eş zamanlı uzaklaştırılması ve su uzaklaştırma reaksiyonları nedeniyle molekül içi ve moleküller arası hidrojen bağlarındaki kısmi kaybın devam ettiğini göstermektedir. 180 dk stabilizasyon bekletme süresinde TGA’dan elde edilen 900 °C'deki karbon verimi yaklaşık %40’tır. Fiziksel ve kimyasal yapıdaki değişimler; iplik numarası ve lif çapı ölçümlerinin yansıra, çakmak ile yakma ve renk değişimi analizi yöntemleri ile de desteklendi.

Supporting Institution

TÜBİTAK-ARDEB

Project Number

223M375

Thanks

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 223M375 numaralı proje ile desteklenmiştir Projeye verdiği destekten ötürü TÜBİTAK’a teşekkürlerimizi sunarız.

References

  • Mohanty AK et al (2005) Natural Fibers, Biopolymers, and Biocomposites. Boca Raton, FL:Taylor&Francis Group, LLC.
  • Dizbay-Onat M, Vaidya UK, Balanay JAG, Lungu CT (2018) Preparation and characterization of flax, hemp and sisal fiber-derived mesoporous activated carbon adsorbents. Adsorption Science & Technology 36(1-2):441-457. https://doi.org/10.1177/0263617417700635
  • Gül A (2025) Fosforik asit emdirilmiş viskoz rayon liflerinin karbonizasyon öncesi termal stabilizasyon aşamasında meydana gelen yapısal dönüşümlerin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40(2):749-760. https://doi.org/10.17341/gazimmfd.1357056
  • Karacan I, Gül A (2014) Carbonization behavior of oxidized viscose rayon fibers in the presence of boric acid–phosphoric acid impregnation. Journal of Materials Science 49:7462-7475. https://doi.org/10.1007/s10853-014-8451-5
  • Karacan İ, Soy T (2013) Investigation of structural transformations taking place during oxidative stabilization of viscose rayon precursor fibers prior to carbonization and activation. Journal of Molecular Structure 1041:29-38. https://doi.org/10.1016/j.molstruc.2013.02.040
  • Fu R, L Liu, W Huang, P Sun (2003) Studies on the structure of activated carbon fibers activated by phosphoric acid. Journal of Applied Polymer Science 87(14):2253–61. https://doi:10.1002/app.11607
  • Gül A (2025) Study on Structural Changes During the Thermal Stabilization Stage of Hemp Fibers Impregnated with Phosphoric Acid Before Carbonization and Activation. Fibers Polym 26(2):91-112. https://doi.org/10.1007/s12221-024-00835-7
  • Rosas JM, J Bedia, J Rodríguez-Mirasol, T Cordero (2009) HEMP-derived activated carbon fibers by chemical activation with phosphoric acid. Fuel 88(1):19–26. https://doi:10.1016/j.fuel.2008.08.004
  • Rahman MM, Karacan I (2022) Structural and thermal characterization of chemically pretreated and thermally oxidized bamboo fiber in activated carbon fiber manufacturing. Journal of Natural Fibers 19(16):15085-15099. https://doi.org/10.1080/15440478.2022.2070324
  • Williams PT, AR Reed (2004) High grade activated carbon matting derived from the chemical activation and pyrolysis of natural fibre textile waste. Journal of Analytical and Applied Pyrolysis 71(2):971–86. https://doi:10.1016/j.jaap.2003.12.007
  • Dumanlı AG, Windle AH (2012) Carbon fibres from cellulosic precursors: a review. Journal of Materials Science 47:4236-4250. https://doi.org/10.1007/s10853-011-6081-8
  • Zeng F, Pan D, Pan N (2005) Choosing the Impregnants by Thermogravimetric Analysis for Preparing Rayon-Based Carbon Fibers. Journal of Inorganic and Organometallic Polymers and Materials 15(2):261–267. https://doi.org/10.1007/s10904-005-5543-3
  • Huang JM, Wang IJ, Wang CH (2001) Preparation and Adsorptive Properties of Cellulose-based Activated Carbon Tows from Cellulose Filaments. Journal of Polymer Research 8(3):201–207. https://doi.org/10.1007/s10965-006-0152-6
  • Worasuwannarak N, Hatori S, Nakagawa H, Miura K (2003) Effect of Oxidation Pre-treatment at 220 to 270 °C on the Carbonization and Activation Behavior of Phenolic Resin Fiber. Carbon 41(5):933–944. https://doi.org/10.1016/S0008-6223(02)00426-8
  • Kandola BK, Horrocks AR, Price D, Coleman GV (1996) Flame-Retardant Treatments of Cellulose and Their Influence on the Mechanism of Cellulose Pyrolysis. Journal of Macromolecular Science, Part C: Polymer Reviews. https://doi.org/10.1080/15321799608014859
  • El Gamal M, Mousa HA, El-Naas MH, Zacharia R, Judd S (2018) Bio-regeneration of activated carbon: A comprehensive review. Separation and Purification Technology 197:345-359. https://doi.org/10.1016/j.seppur.2018.01.015
  • Jiménez V, Sánchez P, Romero A (2017) Materials for activated carbon fiber synthesis. In Activated carbon fiber and textiles (pp. 21-38). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100660-3.00002-X
  • Zhao Y, Fang F, Xiao HM Feng, QP, Xiong LY, Fu SY (2015) Preparation of pore-size controllable activated carbon fibers from bamboo fibers with superior performance for xenon storage. Chemical Engineering Journal 270:528-534. https://doi.org/10.1016/j.cej.2015.02.054
  • Suzuki M (1994) Activated carbon fiber: fundamentals and applications. Carbon 32(4):577-586. https://doi.org/10.1016/0008-6223(94)90075-2
  • Wang H, Xu Z, Kohandehghan A, Li Z, Cui K, Tan X, Mitlin D (2013) Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS nano 7(6):5131-5141. https://doi.org/10.1021/nn400731g
  • Sen T, Reddy HNJ (2011) Various industrial applications of hemp, kinaf, flax and ramie natural fibres. International Journal of Innovation, Management and Technology 2(3):192.
  • Stelea L, Filip I, Lisa G, Ichim M, Drobotă M, Sava C, Mureșan A (2022) Characterisation of hemp fibres reinforced composites using thermoplastic polymers as matrices. Polymers 14(3):481. https://doi.org/10.3390/polym14030481
  • Karacan I, Soy T (2013) Structure and properties of oxidatively stabilized viscose rayon fibers impregnated with boric acid and phosphoric acid prior to carbonization and activation steps. J Mater Sci 48:2009–2021. https://doi.org/10.1007/s10853-012-6970-5
  • Dogan M, Dogan SD, Savas LA, Ozcelik G, Tayfun U (2021) Flame retardant effect of boron compounds in polymeric materials. Compos. Part B Eng 222:109088. https://doi.org/10.1016/j.compositesb.2021.109088
  • Chen Y, Duan H, Ji S, Ma H (2021) Novel phosphorus/nitrogen/boron-containing carboxylic acid as co-curing agent for fire safety of epoxy resin with enhanced mechanical properties. J Hazard Mater 402:123769. https://doi.org/10.1016/j.jhazmat.2020.123769
  • Yang S, Zhang Q, Hu Y (2016) Synthesis of a novel flame retardant containing phosphorus, nitrogen and boron and its application in flame-retardant epoxy resin. Polym Degrad Stab 133:358–366. https://doi.org/10.1016/j.polymdegradstab.2016.09.023
  • Tunçel KŞ (2020) Fosforik Asidin Rejenere Selüloz Esaslı Lifler Üzerine Etkisi, Mühendislik Bilimleri ve Tasarım Dergisi 8(2):605-611. https://doi.org/10.21923/jesd.516920
  • Shindo A, Nakanishi Y, Soma I (1969) Carbon fibers from cellulose fibers. Appl. Polym. Symp. 9:271–284
  • Karacan I, Soy T (2013) Enhancement of oxidative stabilization of viscose rayon fibers impregnated with ammonium sulfate prior to carbonization and activation steps. Journal of applied polymer science, 128(2): 1239-1249. https://doi.org/10.1002/app.38496
  • Oh SY, Yoo D I, Shin Y, Kim HC, Kim HY, Chung YS, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydrate Research 340(15):2376-2391. https://doi.org/10.1016/j.carres.2005.08.007
  • Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Composites Part A: App Sci Manufac 42(8):888-895. https://doi.org/10.1016/j.compositesa.2011.03.008
  • Le Troedec M, Sedan D, Peyratout C, Bonnet JP, Smith A, Guinebretiere R, Krausz P (2008) Influence of various chemical treatments on the composition and structure of hemp fibres. Composites Part A: Applied Science and Manufacturing 39(3):514-522. https://doi.org/10.1016/j.compositesa.2007.12.001
  • Sengupta S, Bhowmick M, Basak S. Samanta KK, Avijit Das LM, Shakyawar DB (2024) Characterization of Indian hemp (Canabinus sativa L.) fiber and investigation of its potential in textile application. Cellulose. https://doi.org/10.1007/s10570-024-06009-1
  • Barbash VA, Yashchenko OV, Yakymenko OS, Zakharko RM, Myshak VD (2022) Preparation of hemp nanocellulose and its use to improve the properties of paper for food packaging. Cellulose 29:8305–8317. https://doi.org/10.1007/s10570-022-04773-6
  • Hamciuc C, Vlad-Bubulac T, Serbezeanu D, Macsim AM, Lisa G, Anghel I, Şofran IE (2022) Effects of phosphorus and boron compounds on thermal stability and flame retardancy properties of epoxy composites. Polymers, 14(19):4005. https://doi.org/10.3390/polym14194005

Karbonizasyon öncesi fosforik asit ve borik asit emdirilmiş kenevir liflerinin termal stabilizasyondaki bekletme sürelerinin yapısal değişimleri üzerine etkisi

Year 2025, Volume: 5 Issue: 2, 720 - 736, 31.07.2025
https://doi.org/10.61112/jiens.1647395

Abstract

This study covers a series of studies on the production of industrial hemp fiber, which is increasingly being talked about with its sustainable, natural and environmentally friendly structure, as a highly strategic product for the industry, as carbon fiber. In order to provide thermal stabilization of industrial hemp fibers, heat treatments were carried out in 6 different holding times including 30, 60, 90, 120, 150 and 180 minutes at 250 °C in an oxygen-rich environment. Physical and chemical changes in the structure of the samples obtained as a result of the holding times during the heat treatment after chemical impregnation were revealed by yarn count, fiber thickness, flame test with lighter, DSC, TGA, FT-IR, X-RD and SEM measurements. DSC study showed that thermal stabilization of hemp fibers impregnated with phosphoric acid and boric acid increased with increasing holding time and prevented the formation of volatile products by blocking hydroxyl groups in the cellulose structure. TGA thermograms showed that carbon yield increased with increasing holding time. XRD results showed that cellulose II crystal structure disappeared and an amorphous structure emerged with increasing holding time. FT-IR spectra show that partial loss of intramolecular and intermolecular hydrogen bonds continued due to simultaneous removal of hydroxyl groups and water removal reactions. Carbon yield at 900 °C obtained from TGA at 180 min. stabilization holding time was approximately 40%. Changes in physical and chemical structure were supported by yarn count and fiber diameter measurements as well as by burning with a lighter and color change analysis methods.

Project Number

223M375

References

  • Mohanty AK et al (2005) Natural Fibers, Biopolymers, and Biocomposites. Boca Raton, FL:Taylor&Francis Group, LLC.
  • Dizbay-Onat M, Vaidya UK, Balanay JAG, Lungu CT (2018) Preparation and characterization of flax, hemp and sisal fiber-derived mesoporous activated carbon adsorbents. Adsorption Science & Technology 36(1-2):441-457. https://doi.org/10.1177/0263617417700635
  • Gül A (2025) Fosforik asit emdirilmiş viskoz rayon liflerinin karbonizasyon öncesi termal stabilizasyon aşamasında meydana gelen yapısal dönüşümlerin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40(2):749-760. https://doi.org/10.17341/gazimmfd.1357056
  • Karacan I, Gül A (2014) Carbonization behavior of oxidized viscose rayon fibers in the presence of boric acid–phosphoric acid impregnation. Journal of Materials Science 49:7462-7475. https://doi.org/10.1007/s10853-014-8451-5
  • Karacan İ, Soy T (2013) Investigation of structural transformations taking place during oxidative stabilization of viscose rayon precursor fibers prior to carbonization and activation. Journal of Molecular Structure 1041:29-38. https://doi.org/10.1016/j.molstruc.2013.02.040
  • Fu R, L Liu, W Huang, P Sun (2003) Studies on the structure of activated carbon fibers activated by phosphoric acid. Journal of Applied Polymer Science 87(14):2253–61. https://doi:10.1002/app.11607
  • Gül A (2025) Study on Structural Changes During the Thermal Stabilization Stage of Hemp Fibers Impregnated with Phosphoric Acid Before Carbonization and Activation. Fibers Polym 26(2):91-112. https://doi.org/10.1007/s12221-024-00835-7
  • Rosas JM, J Bedia, J Rodríguez-Mirasol, T Cordero (2009) HEMP-derived activated carbon fibers by chemical activation with phosphoric acid. Fuel 88(1):19–26. https://doi:10.1016/j.fuel.2008.08.004
  • Rahman MM, Karacan I (2022) Structural and thermal characterization of chemically pretreated and thermally oxidized bamboo fiber in activated carbon fiber manufacturing. Journal of Natural Fibers 19(16):15085-15099. https://doi.org/10.1080/15440478.2022.2070324
  • Williams PT, AR Reed (2004) High grade activated carbon matting derived from the chemical activation and pyrolysis of natural fibre textile waste. Journal of Analytical and Applied Pyrolysis 71(2):971–86. https://doi:10.1016/j.jaap.2003.12.007
  • Dumanlı AG, Windle AH (2012) Carbon fibres from cellulosic precursors: a review. Journal of Materials Science 47:4236-4250. https://doi.org/10.1007/s10853-011-6081-8
  • Zeng F, Pan D, Pan N (2005) Choosing the Impregnants by Thermogravimetric Analysis for Preparing Rayon-Based Carbon Fibers. Journal of Inorganic and Organometallic Polymers and Materials 15(2):261–267. https://doi.org/10.1007/s10904-005-5543-3
  • Huang JM, Wang IJ, Wang CH (2001) Preparation and Adsorptive Properties of Cellulose-based Activated Carbon Tows from Cellulose Filaments. Journal of Polymer Research 8(3):201–207. https://doi.org/10.1007/s10965-006-0152-6
  • Worasuwannarak N, Hatori S, Nakagawa H, Miura K (2003) Effect of Oxidation Pre-treatment at 220 to 270 °C on the Carbonization and Activation Behavior of Phenolic Resin Fiber. Carbon 41(5):933–944. https://doi.org/10.1016/S0008-6223(02)00426-8
  • Kandola BK, Horrocks AR, Price D, Coleman GV (1996) Flame-Retardant Treatments of Cellulose and Their Influence on the Mechanism of Cellulose Pyrolysis. Journal of Macromolecular Science, Part C: Polymer Reviews. https://doi.org/10.1080/15321799608014859
  • El Gamal M, Mousa HA, El-Naas MH, Zacharia R, Judd S (2018) Bio-regeneration of activated carbon: A comprehensive review. Separation and Purification Technology 197:345-359. https://doi.org/10.1016/j.seppur.2018.01.015
  • Jiménez V, Sánchez P, Romero A (2017) Materials for activated carbon fiber synthesis. In Activated carbon fiber and textiles (pp. 21-38). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100660-3.00002-X
  • Zhao Y, Fang F, Xiao HM Feng, QP, Xiong LY, Fu SY (2015) Preparation of pore-size controllable activated carbon fibers from bamboo fibers with superior performance for xenon storage. Chemical Engineering Journal 270:528-534. https://doi.org/10.1016/j.cej.2015.02.054
  • Suzuki M (1994) Activated carbon fiber: fundamentals and applications. Carbon 32(4):577-586. https://doi.org/10.1016/0008-6223(94)90075-2
  • Wang H, Xu Z, Kohandehghan A, Li Z, Cui K, Tan X, Mitlin D (2013) Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS nano 7(6):5131-5141. https://doi.org/10.1021/nn400731g
  • Sen T, Reddy HNJ (2011) Various industrial applications of hemp, kinaf, flax and ramie natural fibres. International Journal of Innovation, Management and Technology 2(3):192.
  • Stelea L, Filip I, Lisa G, Ichim M, Drobotă M, Sava C, Mureșan A (2022) Characterisation of hemp fibres reinforced composites using thermoplastic polymers as matrices. Polymers 14(3):481. https://doi.org/10.3390/polym14030481
  • Karacan I, Soy T (2013) Structure and properties of oxidatively stabilized viscose rayon fibers impregnated with boric acid and phosphoric acid prior to carbonization and activation steps. J Mater Sci 48:2009–2021. https://doi.org/10.1007/s10853-012-6970-5
  • Dogan M, Dogan SD, Savas LA, Ozcelik G, Tayfun U (2021) Flame retardant effect of boron compounds in polymeric materials. Compos. Part B Eng 222:109088. https://doi.org/10.1016/j.compositesb.2021.109088
  • Chen Y, Duan H, Ji S, Ma H (2021) Novel phosphorus/nitrogen/boron-containing carboxylic acid as co-curing agent for fire safety of epoxy resin with enhanced mechanical properties. J Hazard Mater 402:123769. https://doi.org/10.1016/j.jhazmat.2020.123769
  • Yang S, Zhang Q, Hu Y (2016) Synthesis of a novel flame retardant containing phosphorus, nitrogen and boron and its application in flame-retardant epoxy resin. Polym Degrad Stab 133:358–366. https://doi.org/10.1016/j.polymdegradstab.2016.09.023
  • Tunçel KŞ (2020) Fosforik Asidin Rejenere Selüloz Esaslı Lifler Üzerine Etkisi, Mühendislik Bilimleri ve Tasarım Dergisi 8(2):605-611. https://doi.org/10.21923/jesd.516920
  • Shindo A, Nakanishi Y, Soma I (1969) Carbon fibers from cellulose fibers. Appl. Polym. Symp. 9:271–284
  • Karacan I, Soy T (2013) Enhancement of oxidative stabilization of viscose rayon fibers impregnated with ammonium sulfate prior to carbonization and activation steps. Journal of applied polymer science, 128(2): 1239-1249. https://doi.org/10.1002/app.38496
  • Oh SY, Yoo D I, Shin Y, Kim HC, Kim HY, Chung YS, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydrate Research 340(15):2376-2391. https://doi.org/10.1016/j.carres.2005.08.007
  • Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Composites Part A: App Sci Manufac 42(8):888-895. https://doi.org/10.1016/j.compositesa.2011.03.008
  • Le Troedec M, Sedan D, Peyratout C, Bonnet JP, Smith A, Guinebretiere R, Krausz P (2008) Influence of various chemical treatments on the composition and structure of hemp fibres. Composites Part A: Applied Science and Manufacturing 39(3):514-522. https://doi.org/10.1016/j.compositesa.2007.12.001
  • Sengupta S, Bhowmick M, Basak S. Samanta KK, Avijit Das LM, Shakyawar DB (2024) Characterization of Indian hemp (Canabinus sativa L.) fiber and investigation of its potential in textile application. Cellulose. https://doi.org/10.1007/s10570-024-06009-1
  • Barbash VA, Yashchenko OV, Yakymenko OS, Zakharko RM, Myshak VD (2022) Preparation of hemp nanocellulose and its use to improve the properties of paper for food packaging. Cellulose 29:8305–8317. https://doi.org/10.1007/s10570-022-04773-6
  • Hamciuc C, Vlad-Bubulac T, Serbezeanu D, Macsim AM, Lisa G, Anghel I, Şofran IE (2022) Effects of phosphorus and boron compounds on thermal stability and flame retardancy properties of epoxy composites. Polymers, 14(19):4005. https://doi.org/10.3390/polym14194005
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Polymer Technologies, Fiber Technology, Textile Sciences and Engineering (Other)
Journal Section Research Article
Authors

Hakan Ateş 0009-0004-2408-9924

Abdullah Gül 0000-0001-6990-417X

Project Number 223M375
Submission Date March 3, 2025
Acceptance Date June 28, 2025
Publication Date July 31, 2025
Published in Issue Year 2025 Volume: 5 Issue: 2

Cite

APA Ateş, H., & Gül, A. (2025). Karbonizasyon öncesi fosforik asit ve borik asit emdirilmiş kenevir liflerinin termal stabilizasyondaki bekletme sürelerinin yapısal değişimleri üzerine etkisi. Journal of Innovative Engineering and Natural Science, 5(2), 720-736. https://doi.org/10.61112/jiens.1647395


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0