Araştırma Makalesi
BibTex RIS Kaynak Göster

Molecular Characterisation of Some Corn (Zea mays L.) Genotypes Growing in Iğdır Province

Yıl 2024, , 1731 - 1741, 01.12.2024
https://doi.org/10.21597/jist.1544279

Öz

Inter-primer binding site markers based on retrotransposons or iPBS retrotransposon markers have been useful in determining genetic diversity in a large number of organisms. The CTAB technique was employed to isolate DNA, and iPBS molecular markers were employed to conduct genetic diversity studies. Based on the analyses' findings, the genotypes exhibited a significant degree of genetic diversity, with a 100% polymorphic locus percentage. A total of 154 polymorphic bands were generated as a consequence of molecular identification experiments conducted with 12 IPBS markers. The typical polymorphism rate was determined to be 100%. Additionally, the average polymorphism (PIC) value, which quantifies the gene diversity of all markers examined in the study, was 0.228, and the average H value was 0.274. The genotypes 1 and 14 exhibited the lowest similarity ratio, with a coefficient value of 0.1600, when the DICE similarity coefficients were compared. These results were derived by comparing the DICE similarity coefficients of the samples. The analysis determined that the greatest similarity value between genotypes 4 and 3 was 0.6747. Maize genotypes are classified into four distinct subpopulations. Genotypes can be developed for reproductive research in order to demonstrate the molecular diversity of a population. It was determined that IPBS molecular markers are appropriate genetic instruments for genetic and phylogenetic analyses in maize varieties. This conclusion was attained as a consequence of the aforementioned. The data that is gathered will serve as a scientific foundation and a valuable contribution to the field of maize genetics in the future.

Destekleyen Kurum

Iğdır Üniversitesi BİLİMSEL ARAŞTIRMA PROJELERİ KORDİNATÖRLÜĞÜ

Proje Numarası

ZİF0324Y07

Teşekkür

Bu araştırma Iğdır Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğünün desteği ile (ZİF0324Y07) gerçekleştirilmiştir. Desteklerinden dolayı teşekkür ederiz.

Kaynakça

  • Andeden, E. E., Baloch, F. S., Derya, M., Kilian, B., & Özkan, H. (2013). iPBS-Retrotransposons-based genetic diversity and relationship among wild annual Cicer species. Journal of Plant Biochemistry and Biotechnology, 22, 453-466.
  • Aydin, A. (2023). Determination of genetic diversity of some upland and Sea Island cotton genotypes using high-resolution capillary electrophoresis gel. Agronomy, 13(9), 2407.
  • Aydın, A. (2024). Determining the genetic diversity of some black cumin genotypes collected in different regions of Türkiye using RAPD markers. International Journal of Agriculture Environment and Food Sciences, 8(2), 294-300.
  • Baloch, F. S., Alsaleh, A., de Miera, L. E. S., Hatipoğlu, R., Çiftçi, V., Karaköy, T., ... & Özkan, H. (2015). DNA based iPBS-retrotransposon markers for investigating the population structure of pea (Pisum sativum) germplasm from Turkey. Biochemical Systematics and Ecology, 61, 244-252.
  • Baran, N., Nadeem, M. A., Yılmaz, A., Andırman, M., Kurt, F., Temiz, G., & Baloch, F. (2022). Exploring genetic diversity and population structure of Turkish Black Sea region maize (Zea mays L.) germplasm using SSR markers. Erzincan University Journal of Science and Technology, 15(3), 953-963.
  • Bark, O. H., & Havey, M. J. (1995). Similarities and relationships among populations of the bulb onion as estimated by RFLPs. Theoretical and Applied Genetics, 90, 407-414.
  • Bruford, M. W., Davies, N., Dulloo, M. E., Faith, D. P., & Walters, M. (2017). Monitoring changes in genetic diversity. The GEO handbook on biodiversity observation networks, 107-128.
  • Celik, I., & Aydin, A. (2023). SSR mining of black cumin (Nigella sativa L.) transcriptome for molecular marker development. Genetic Resources and Crop Evolution, 70(2), 629-638.
  • Cömertpay, G., Baloch, F. S., Kilian, B., Ülger, A. C., & Özkan, H. (2012). Diversity assessment of Turkish maize landraces based on fluorescent labelled SSR markers. Plant Molecular Biology Reporter, 30, 261-274.
  • Demir, E. (2016). Farklı ekolojik koşullarda bazı atdişi mısır genotiplerinin performanslarının belirlenmesi (Master's thesis, Hatay Mustafa Kemal Üniversitesi).
  • Demirel, F., Türkoğlu, A., Haliloğlu, K., Eren, B., Özkan, G., Uysal, P., ... & Bocianowski, J. (2023). Mammalian sex hormones as steroid-structured compounds in wheat seedling: Template of the cytosine methylation alteration and retrotransposon polymorphisms with iPBS and CRED-iBPS techniques. Applied Sciences, 13(17), 9538.
  • Demirel, F., Yıldırım, B., Eren, B., Demirel, S., Türkoğlu, A., Haliloğlu, K., ... & Bocianowski, J. (2024). Revealing genetic diversity and population structure in Türkiye’s wheat germplasm using iPBS-retrotransposon markers. Agronomy, 14(2), 300.
  • Dice LR, 1945. Measures of the amount of ecological association between species. Ecology 26: 297–307.
  • Eren, B., Keskin, B., Demirel, F., Demirel, S., Türkoğlu, A., Yilmaz, A., & Haliloğlu, K. (2023a). Assessment of genetic diversity and population structure in local alfalfa genotypes using iPBS molecular markers. Genetic Resources and Crop Evolution, 70(2), 617-628.
  • Eren, B., Türkoğlu, A., Haliloğlu, K., Demirel, F., Nowosad, K., Özkan, G., ... & Bocianowski, J. (2023b). Investigation of the influence of polyamines on mature embryo culture and DNA methylation of wheat (Triticum aestivum L.) using the machine learning algorithm method. Plants, 12(18), 3261.
  • Fılız, E., Uras, M. E., Ozturk, N., Gungor, H., & Ozyıgıt, I. I. (2024). Genetic diversity and phylogenetic analyses of Turkish sweet corn (Zea mays var. saccharata) varieties using ISSR markers and chloroplast trnL-F IGS region. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(2), 13551-13551.
  • Gupta, P. K., & Rustgi, S. (2004). Molecular markers from the transcribed/expressed region of the genome in higher plants. Functional & Integrative Genomics, 4, 139-162.
  • Hajj-Moussa, E., Millán, T., Gil, J., & Cubero, J. I. (1996). Variability and genome length estimation in chickpea (Cicer arietinum L.) revealed by RAPD analysis. Journal of Genetics and Breeding, 51, 83–85.
  • Hossein-Pour A, Ozkan G, Nalci O, Haliloglu K (2019) estimation of genomic instability and dna methylation due to aluminum (al) stress in wheat (Triticum aestivum L.) using ipbs and cred-ipbs analyses. Turk J Bot 43:27–37.
  • Hughes, A. R., Inouye, B. D., Johnson, M. T., Underwood, N., & Vellend, M. (2008). Ecological consequences of genetic diversity. Ecology letters, 11(6), 609-623.
  • Jonah, P. M., Bello, L. L., Lucky, O., Midau, A., & Moruppa, S. M. (2011). The importance of molecular markers in plant breeding programmes. Global Journal of Science Frontier Research, 11(5), 5-12.
  • Kalendar, R., Antonius, K., Smýkal, P., & Schulman, A. H. (2010). iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theoretical and Applied Genetics, 121, 1419-1430.
  • Kantety, R. V., Zeng, X. P., Bennetzen, J. L., & Zehr, B. E. (1995). Assessment of genetic diversity in Dent and Popcorn (Zea mays L.) inbred lines using inter-simple sequence repeat (ISSR) amplification. Molecular Breeding, 1, 365–373.
  • Kemp, S. J., Brezinsky, L., & Teale, A. J. (1993). A panel of bovine, ovine and caprine polymorphic microsatellites. Animal Genetics, 24, 363-365.
  • Keskin, B., Akdeniz, H., Temel, S., & Eren, B. (2018). Determination of feeding values of different grain corn (Zea mays L.) varieties, Atatürk Univ., J. of the Agricultural Faculty, 49 (1): 15-19
  • Keskin, B., Akdeniz, H., Temel, S., Eren, B. (2017b). The Yield and Yield Components of Some Silage Maize (Zea mays L.) Varieties as the Second Crop. VIII. International Scientific Agriculture Symposium, Jahorina, October 05-08, 2017, pp:1029-1036.
  • Keskin, B., Temel, S., & Eren, B. (2017a). Determination of yield and plant characteristics of some silage corn varieties. Journal of the Institute of Science and Technology, 7(1), 347-351.
  • Kharb, P. (2016). Identification of hybrids and their parents through SSR profiling in maize [PhD thesis, CCSHAU].
  • Kocak, M. Z., Kaysim, M. G., Aydın, A., Erdinc, C., & Kulak, M. (2023). Genetic diversity of flax genotypes (Linum usitatissimum L.) by using agro-morphological properties and molecular markers. Genetic Resources and Crop Evolution, 70(8), 2279-2306.
  • Kumlay, A. M., Eren, B., Demirel, S., Demirel, F., & Yıldırım, B. (2021). Bazı Pamuk Çeşitlerinde iPBS Analiziyle Genetik Varyasyonun Ortaya Çıkarılması. Avrupa Bilim ve Teknoloji Dergisi, (21), 67-73.
  • Mantel N, 1967. The detection of disease clustering and a generalized regression approach. Cancer Res 27: 209–220.
  • Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertpay, G., Yıldız, M., ... & Baloch, F. S. (2018). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment, 32(2), 261-285.
  • Remya, K. S., Joseph, S., Lakshmi, P. K., & Akhila, S. (2010). Microsatellites in varied arenas of research. Journal of Pharmacy and Bioallied Sciences, 2(2), 141-143.
  • Rohlf, F.J. (2000) NTSYS-pc: numerical taxonomy (Vitis vinifera L.) varieties using morphological data and multivariate analysis system. Exeter Software and AFLP markers. Electron J Biotechnol 6:37–45.
  • Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A., & Allard, R. (1984). Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences, 81(24), 8014-8018.
  • Şakiroğlu, M., 2010. Bitki Genetik Kaynaklarının Uluslararası Paylaşım Sorunu SETA Analiz, Sayı: 25: 3-14.
  • Sakiroglu, M., Doyle, J. J., & Brummer, E. C. (2010). The population genetic structure of diploid Medicago sativa L. germplasm. In Sustainable use of genetic diversity in forage and turf breeding (pp. 143-148). Springer Netherlands.
  • Shirmohammadli, S., Sabouri, H., Ahangar, L., Ebadi, A. A., & Sajjadi, S. J. (2018). Genetic diversity and association analysis of rice genotypes for grain physical quality using iPBS, IRAP, and ISSR markers. Journal of Genetic Resources, 4(2), 122-129.
  • Türkoğlu, A., Haliloğlu, K., Tosun, M., Bujak, H., Eren, B., Demirel, F., ... & Niedbała, G. (2023a). Ethyl methanesulfonate (EMS) mutagen toxicity-induced DNA damage, cytosine methylation alteration, and iPBS-retrotransposon polymorphisms in wheat (Triticum aestivum L.). Agronomy, 13(7), 1767.
  • Türkoğlu, A., Haliloğlu, K., Tosun, M., Szulc, P., Demirel, F., Eren, B., ... & Niedbała, G. (2023b). Sodium azide as a chemical mutagen in wheat (Triticum aestivum L.): patterns of the genetic and epigenetic effects with iPBS and CRED-iPBS techniques. Agriculture, 13(6), 1242.

Iğdır İlinde Yetiştiriciliği Yapılan Bazı Mısır (Zea mays L.) Genotiplerinin Moleküler Karakterizasyonu

Yıl 2024, , 1731 - 1741, 01.12.2024
https://doi.org/10.21597/jist.1544279

Öz

Retrotranspozonlara dayalı primerler arası bağlanma bölgesi veya iPBS retrotranspozon belirteçleri, çok sayıda organizmada genetik çeşitliliğin belirlenmesinde yararlı olmuştur. DNA'yı izole etmek için CTAB tekniği kullanılmış ve genetik çeşitlilik çalışmaları yapmak için iPBS moleküler belirteçleri kullanılmıştır. Analizlerin bulgularına göre, genotipler %100 polimorfik lokus yüzdesi ile önemli derecede genetik çeşitlilik sergilemiştir. 12 IPBS markörü ile yürütülen moleküler tanımlama deneyleri sonucunda toplam 154 polimorfik bant üretilmiştir. Tipik polimorfizm oranı %100 olarak belirlenmiştir. Ayrıca, çalışmada incelenen tüm markörlerin gen çeşitliliğini ölçen ortalama polimorfizm (PIC) değeri 0,228 ve ortalama H değeri 0,274 olarak belirlenmiştir. DICE benzerlik katsayıları karşılaştırıldığında, 1 ve 14 numaralı genotipler 0,1600 katsayı değeri ile en düşük benzerlik oranını sergilemiştir. Bu sonuçlar, örneklerin DICE benzerlik katsayılarının karşılaştırılmasıyla elde edilmiştir. Analiz, 4 ve 3 numaralı genotipler arasındaki en büyük benzerlik değerinin 0.6747 olduğunu belirledi. Mısır genotipleri dört farklı alt popülasyon olarak sınıflandırılmıştır. Genotipler, bir popülasyonun moleküler çeşitliliğini göstermek amacıyla üreme araştırmaları için geliştirilebilir. IPBS moleküler markörlerinin mısır çeşitlerinde genetik ve filogenetik analizler için uygun genetik araçlar olduğu belirlenmiştir. Bu sonuca yukarıda bahsedilenlerin bir sonucu olarak ulaşılmıştır. Elde edilen veriler, gelecekte mısır genetiği alanına bilimsel bir temel ve değerli bir katkı olarak hizmet edecektir.

Proje Numarası

ZİF0324Y07

Kaynakça

  • Andeden, E. E., Baloch, F. S., Derya, M., Kilian, B., & Özkan, H. (2013). iPBS-Retrotransposons-based genetic diversity and relationship among wild annual Cicer species. Journal of Plant Biochemistry and Biotechnology, 22, 453-466.
  • Aydin, A. (2023). Determination of genetic diversity of some upland and Sea Island cotton genotypes using high-resolution capillary electrophoresis gel. Agronomy, 13(9), 2407.
  • Aydın, A. (2024). Determining the genetic diversity of some black cumin genotypes collected in different regions of Türkiye using RAPD markers. International Journal of Agriculture Environment and Food Sciences, 8(2), 294-300.
  • Baloch, F. S., Alsaleh, A., de Miera, L. E. S., Hatipoğlu, R., Çiftçi, V., Karaköy, T., ... & Özkan, H. (2015). DNA based iPBS-retrotransposon markers for investigating the population structure of pea (Pisum sativum) germplasm from Turkey. Biochemical Systematics and Ecology, 61, 244-252.
  • Baran, N., Nadeem, M. A., Yılmaz, A., Andırman, M., Kurt, F., Temiz, G., & Baloch, F. (2022). Exploring genetic diversity and population structure of Turkish Black Sea region maize (Zea mays L.) germplasm using SSR markers. Erzincan University Journal of Science and Technology, 15(3), 953-963.
  • Bark, O. H., & Havey, M. J. (1995). Similarities and relationships among populations of the bulb onion as estimated by RFLPs. Theoretical and Applied Genetics, 90, 407-414.
  • Bruford, M. W., Davies, N., Dulloo, M. E., Faith, D. P., & Walters, M. (2017). Monitoring changes in genetic diversity. The GEO handbook on biodiversity observation networks, 107-128.
  • Celik, I., & Aydin, A. (2023). SSR mining of black cumin (Nigella sativa L.) transcriptome for molecular marker development. Genetic Resources and Crop Evolution, 70(2), 629-638.
  • Cömertpay, G., Baloch, F. S., Kilian, B., Ülger, A. C., & Özkan, H. (2012). Diversity assessment of Turkish maize landraces based on fluorescent labelled SSR markers. Plant Molecular Biology Reporter, 30, 261-274.
  • Demir, E. (2016). Farklı ekolojik koşullarda bazı atdişi mısır genotiplerinin performanslarının belirlenmesi (Master's thesis, Hatay Mustafa Kemal Üniversitesi).
  • Demirel, F., Türkoğlu, A., Haliloğlu, K., Eren, B., Özkan, G., Uysal, P., ... & Bocianowski, J. (2023). Mammalian sex hormones as steroid-structured compounds in wheat seedling: Template of the cytosine methylation alteration and retrotransposon polymorphisms with iPBS and CRED-iBPS techniques. Applied Sciences, 13(17), 9538.
  • Demirel, F., Yıldırım, B., Eren, B., Demirel, S., Türkoğlu, A., Haliloğlu, K., ... & Bocianowski, J. (2024). Revealing genetic diversity and population structure in Türkiye’s wheat germplasm using iPBS-retrotransposon markers. Agronomy, 14(2), 300.
  • Dice LR, 1945. Measures of the amount of ecological association between species. Ecology 26: 297–307.
  • Eren, B., Keskin, B., Demirel, F., Demirel, S., Türkoğlu, A., Yilmaz, A., & Haliloğlu, K. (2023a). Assessment of genetic diversity and population structure in local alfalfa genotypes using iPBS molecular markers. Genetic Resources and Crop Evolution, 70(2), 617-628.
  • Eren, B., Türkoğlu, A., Haliloğlu, K., Demirel, F., Nowosad, K., Özkan, G., ... & Bocianowski, J. (2023b). Investigation of the influence of polyamines on mature embryo culture and DNA methylation of wheat (Triticum aestivum L.) using the machine learning algorithm method. Plants, 12(18), 3261.
  • Fılız, E., Uras, M. E., Ozturk, N., Gungor, H., & Ozyıgıt, I. I. (2024). Genetic diversity and phylogenetic analyses of Turkish sweet corn (Zea mays var. saccharata) varieties using ISSR markers and chloroplast trnL-F IGS region. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(2), 13551-13551.
  • Gupta, P. K., & Rustgi, S. (2004). Molecular markers from the transcribed/expressed region of the genome in higher plants. Functional & Integrative Genomics, 4, 139-162.
  • Hajj-Moussa, E., Millán, T., Gil, J., & Cubero, J. I. (1996). Variability and genome length estimation in chickpea (Cicer arietinum L.) revealed by RAPD analysis. Journal of Genetics and Breeding, 51, 83–85.
  • Hossein-Pour A, Ozkan G, Nalci O, Haliloglu K (2019) estimation of genomic instability and dna methylation due to aluminum (al) stress in wheat (Triticum aestivum L.) using ipbs and cred-ipbs analyses. Turk J Bot 43:27–37.
  • Hughes, A. R., Inouye, B. D., Johnson, M. T., Underwood, N., & Vellend, M. (2008). Ecological consequences of genetic diversity. Ecology letters, 11(6), 609-623.
  • Jonah, P. M., Bello, L. L., Lucky, O., Midau, A., & Moruppa, S. M. (2011). The importance of molecular markers in plant breeding programmes. Global Journal of Science Frontier Research, 11(5), 5-12.
  • Kalendar, R., Antonius, K., Smýkal, P., & Schulman, A. H. (2010). iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theoretical and Applied Genetics, 121, 1419-1430.
  • Kantety, R. V., Zeng, X. P., Bennetzen, J. L., & Zehr, B. E. (1995). Assessment of genetic diversity in Dent and Popcorn (Zea mays L.) inbred lines using inter-simple sequence repeat (ISSR) amplification. Molecular Breeding, 1, 365–373.
  • Kemp, S. J., Brezinsky, L., & Teale, A. J. (1993). A panel of bovine, ovine and caprine polymorphic microsatellites. Animal Genetics, 24, 363-365.
  • Keskin, B., Akdeniz, H., Temel, S., & Eren, B. (2018). Determination of feeding values of different grain corn (Zea mays L.) varieties, Atatürk Univ., J. of the Agricultural Faculty, 49 (1): 15-19
  • Keskin, B., Akdeniz, H., Temel, S., Eren, B. (2017b). The Yield and Yield Components of Some Silage Maize (Zea mays L.) Varieties as the Second Crop. VIII. International Scientific Agriculture Symposium, Jahorina, October 05-08, 2017, pp:1029-1036.
  • Keskin, B., Temel, S., & Eren, B. (2017a). Determination of yield and plant characteristics of some silage corn varieties. Journal of the Institute of Science and Technology, 7(1), 347-351.
  • Kharb, P. (2016). Identification of hybrids and their parents through SSR profiling in maize [PhD thesis, CCSHAU].
  • Kocak, M. Z., Kaysim, M. G., Aydın, A., Erdinc, C., & Kulak, M. (2023). Genetic diversity of flax genotypes (Linum usitatissimum L.) by using agro-morphological properties and molecular markers. Genetic Resources and Crop Evolution, 70(8), 2279-2306.
  • Kumlay, A. M., Eren, B., Demirel, S., Demirel, F., & Yıldırım, B. (2021). Bazı Pamuk Çeşitlerinde iPBS Analiziyle Genetik Varyasyonun Ortaya Çıkarılması. Avrupa Bilim ve Teknoloji Dergisi, (21), 67-73.
  • Mantel N, 1967. The detection of disease clustering and a generalized regression approach. Cancer Res 27: 209–220.
  • Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertpay, G., Yıldız, M., ... & Baloch, F. S. (2018). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment, 32(2), 261-285.
  • Remya, K. S., Joseph, S., Lakshmi, P. K., & Akhila, S. (2010). Microsatellites in varied arenas of research. Journal of Pharmacy and Bioallied Sciences, 2(2), 141-143.
  • Rohlf, F.J. (2000) NTSYS-pc: numerical taxonomy (Vitis vinifera L.) varieties using morphological data and multivariate analysis system. Exeter Software and AFLP markers. Electron J Biotechnol 6:37–45.
  • Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A., & Allard, R. (1984). Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences, 81(24), 8014-8018.
  • Şakiroğlu, M., 2010. Bitki Genetik Kaynaklarının Uluslararası Paylaşım Sorunu SETA Analiz, Sayı: 25: 3-14.
  • Sakiroglu, M., Doyle, J. J., & Brummer, E. C. (2010). The population genetic structure of diploid Medicago sativa L. germplasm. In Sustainable use of genetic diversity in forage and turf breeding (pp. 143-148). Springer Netherlands.
  • Shirmohammadli, S., Sabouri, H., Ahangar, L., Ebadi, A. A., & Sajjadi, S. J. (2018). Genetic diversity and association analysis of rice genotypes for grain physical quality using iPBS, IRAP, and ISSR markers. Journal of Genetic Resources, 4(2), 122-129.
  • Türkoğlu, A., Haliloğlu, K., Tosun, M., Bujak, H., Eren, B., Demirel, F., ... & Niedbała, G. (2023a). Ethyl methanesulfonate (EMS) mutagen toxicity-induced DNA damage, cytosine methylation alteration, and iPBS-retrotransposon polymorphisms in wheat (Triticum aestivum L.). Agronomy, 13(7), 1767.
  • Türkoğlu, A., Haliloğlu, K., Tosun, M., Szulc, P., Demirel, F., Eren, B., ... & Niedbała, G. (2023b). Sodium azide as a chemical mutagen in wheat (Triticum aestivum L.): patterns of the genetic and epigenetic effects with iPBS and CRED-iPBS techniques. Agriculture, 13(6), 1242.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Hücresi ve Moleküler Biyoloji, Tarımda Bitki Islahı
Bölüm Moleküler Biyoloji ve Genetik / Moleculer Biology and Genetic
Yazarlar

Gizem Çevik Bu kişi benim 0000-0003-2494-1852

Barış Eren 0000-0002-3852-6476

Proje Numarası ZİF0324Y07
Yayımlanma Tarihi 1 Aralık 2024
Gönderilme Tarihi 6 Eylül 2024
Kabul Tarihi 2 Ekim 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Çevik, G., & Eren, B. (2024). Molecular Characterisation of Some Corn (Zea mays L.) Genotypes Growing in Iğdır Province. Journal of the Institute of Science and Technology, 14(4), 1731-1741. https://doi.org/10.21597/jist.1544279
AMA Çevik G, Eren B. Molecular Characterisation of Some Corn (Zea mays L.) Genotypes Growing in Iğdır Province. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2024;14(4):1731-1741. doi:10.21597/jist.1544279
Chicago Çevik, Gizem, ve Barış Eren. “Molecular Characterisation of Some Corn (Zea Mays L.) Genotypes Growing in Iğdır Province”. Journal of the Institute of Science and Technology 14, sy. 4 (Aralık 2024): 1731-41. https://doi.org/10.21597/jist.1544279.
EndNote Çevik G, Eren B (01 Aralık 2024) Molecular Characterisation of Some Corn (Zea mays L.) Genotypes Growing in Iğdır Province. Journal of the Institute of Science and Technology 14 4 1731–1741.
IEEE G. Çevik ve B. Eren, “Molecular Characterisation of Some Corn (Zea mays L.) Genotypes Growing in Iğdır Province”, Iğdır Üniv. Fen Bil Enst. Der., c. 14, sy. 4, ss. 1731–1741, 2024, doi: 10.21597/jist.1544279.
ISNAD Çevik, Gizem - Eren, Barış. “Molecular Characterisation of Some Corn (Zea Mays L.) Genotypes Growing in Iğdır Province”. Journal of the Institute of Science and Technology 14/4 (Aralık 2024), 1731-1741. https://doi.org/10.21597/jist.1544279.
JAMA Çevik G, Eren B. Molecular Characterisation of Some Corn (Zea mays L.) Genotypes Growing in Iğdır Province. Iğdır Üniv. Fen Bil Enst. Der. 2024;14:1731–1741.
MLA Çevik, Gizem ve Barış Eren. “Molecular Characterisation of Some Corn (Zea Mays L.) Genotypes Growing in Iğdır Province”. Journal of the Institute of Science and Technology, c. 14, sy. 4, 2024, ss. 1731-4, doi:10.21597/jist.1544279.
Vancouver Çevik G, Eren B. Molecular Characterisation of Some Corn (Zea mays L.) Genotypes Growing in Iğdır Province. Iğdır Üniv. Fen Bil Enst. Der. 2024;14(4):1731-4.