Investigation of Structural Performances of Composite Materials Reinforced by Glass and Carbon Fibers Used on Unmanned Aerial Vehicles Using Numerical Simulations
Yıl 2020,
, 1928 - 1942, 01.09.2020
Ahmet Mesut Öztürk
,
Ömer Gündoğdu
Öz
Composite materials are often preferred in many industries such as aviation and automotive since they have many advantageous properties such as high specific strength, high corrosion resistance and ability to absorb vibration. In this study, a research for structural behaviour is theoretically done on an unmanned aerial vehicle wing composed of composite materials and metallic materials. Two different wing geometries are considered in the study. The first of these is the wing geometry without control surfaces that are flap and aileron. This wing geometry is mentioned as Model 1. The second of these is the wing geometry with flap, aileron and related components. The second wing geometry is mentioned as Model 2. New wing models composed of different material systems are created and analysed under different loads in order to develop reference wing model. These loads are the loads calculated under level flight cruise conditions and maximum static pressure loading conditions. In this way, the optimum configurations of the wing models are obtained.
Kaynakça
- Anderson Jr JD, 1999. Aircraft Performance and Design. McGraw-Hill Inc, pp. 580, Boston, USA.
- Blanchard BS, Fabrycky WJ, 2006. System Engineering and Analysis. Pearson Prentice Hall, pp. 816, New Jersey, USA.
- Griffin CF, Fogg LD, Dunning EG, 1981. Advanced composite aileron for L-1011 transport aircraft: Design and analysis. NASA, Technical Report; NASA-CR-165635, NAS 1.26:165635, LR-29635
- İnsuyu ET, 2010. Aero-Structural Design and Analysis of an Unmanned Aerial Vehicle and its Mission Adaptive Wing. Middle East Technical University Graduate School of Natural and Applied Sciences, Master Thesis (Printed).
- Ovalı İ, Esen C, 2017. ANSYS® Workbench. Kodlab Yayın Dağıtım Yazılım ve Eğitim Hizmetleri San. ve Tic. Ltd. Şti., s. 21-26, İstanbul-Türkiye.
- Öztürk AM, 2019. Kompozit Malzemeden Mamul İnsansız Hava Aracı Parçalarının Yapısal Analizi. Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
- Patterson JB, Grenestedt JL, 2018. Manufacturing of a composite wing with internal structure in one cure cycle. Composite Structures, 206: 601-609.
- Romano F, Fiori J, Mercurio, U, 2009. Structural design and test capability of a CFRP aileron. Composite Structures, 88 (3): 333–341.
- Sakarya A, 2011. Multidisciplinary Design of An Unmanned Aerial Vehicle Wing. Middle East Technical University Graduate School of Natural and Applied Sciences, Master Thesis (Printed).
- Sakarya E, 2010. Structural Design and Evaluation of an Adaptive Camber Wing. Middle East Technical University Graduate School of Natural and Applied Sciences, Master Thesis (Printed).
- Sepe R, Citarella R, De Luca A, Armentani E, 2017. Numerical and Experimental Investigation on the Structural Behaviour of a Horizontal Stabilizer under Critical Aerodynamic Loading Conditions. Advances in Materials Science and Engineering, ID 1092701.
- Soutis C, 2005. Carbon fiber reinforced plastics in aircraft construction. Materials Science and Engineering:A, 412 (1-2): 171–176.
- Starke Jr EA, Staley JT, 1996. Application of modern aluminum alloys to aircraft. Progress in erospace Sciences, 32 (2-3): 131–172.
- Starnes Jr JH, Haftka RT, 1979. Preliminary Design of Composite Wings for Buckling, Strength, and Displacement Constraints. Journal of Aircraft, 16 (8): 564-570.
- Ünlüsoy L, 2010. Structural Design and Analysis of The Mission Adaptive Wings of An Unmanned Aerial Vehicle. Middle East Technical University Graduate School of Natural and Applied Sciences, Master Thesis (Printed).
- Vasiliev VV, Morozov EV, 2001. Mechanics and Analysis of Composite Materials. Elsevier Science Ltd., pp. 271-283, The Boulevard Langford Lane Kidlington Oxford-UK.
İHA Kanatlarında Kullanılan Cam ve Karbon Elyaf Takviyeli Kompozitlerin Yapısal Performanslarının Sayısal Simülasyonlar ile İncelenmesi
Yıl 2020,
, 1928 - 1942, 01.09.2020
Ahmet Mesut Öztürk
,
Ömer Gündoğdu
Öz
Kompozit malzemeler yüksek özgül mukavemet, korozyon direnci, titreşim sönümleme kabiliyeti gibi birçok avantajlı özelliğe sahip oldukları için başta havacılık ve otomotiv olmak üzere birçok sektörde sıklıkla tercih edilmektedirler. Bu çalışma kapsamında kompozit malzeme ve metalik malzemelerin birlikte oluşturduğu bir insansız hava aracı kanadının yapısal davranışı teorik olarak incelenmiştir. Çalışmada iki farklı kanat geometrisi üzerinde durulmuştur. Birincisi, flap ve aileron bulundurmayan yekpare bir kabuğa sahip kanat geometrisidir. Bu kanat geometrisi Model 1 olarak isimlendirilmiştir. İkincisi ise üzerinde flap ve aileron kontrol yüzeylerini ve ilgili tüm yapısal elemanlarını barındıran kanat geometrisidir ve bu kanat geometrisi ise Model 2 olarak adlandırılmıştır. Referans alınan teorik kanat modelini yapısal olarak geliştirmek amacıyla farklı malzeme sistemlerinin kullanıldığı yeni teorik kanat modelleri oluşturulmuştur. Bu modeller yatay uçuş seyir şartları ve maksimum statik basınç yükü altında yapısal analizlere tabi tutulmuş en uygun konfigürasyonlar ortaya konulmuştur.
Kaynakça
- Anderson Jr JD, 1999. Aircraft Performance and Design. McGraw-Hill Inc, pp. 580, Boston, USA.
- Blanchard BS, Fabrycky WJ, 2006. System Engineering and Analysis. Pearson Prentice Hall, pp. 816, New Jersey, USA.
- Griffin CF, Fogg LD, Dunning EG, 1981. Advanced composite aileron for L-1011 transport aircraft: Design and analysis. NASA, Technical Report; NASA-CR-165635, NAS 1.26:165635, LR-29635
- İnsuyu ET, 2010. Aero-Structural Design and Analysis of an Unmanned Aerial Vehicle and its Mission Adaptive Wing. Middle East Technical University Graduate School of Natural and Applied Sciences, Master Thesis (Printed).
- Ovalı İ, Esen C, 2017. ANSYS® Workbench. Kodlab Yayın Dağıtım Yazılım ve Eğitim Hizmetleri San. ve Tic. Ltd. Şti., s. 21-26, İstanbul-Türkiye.
- Öztürk AM, 2019. Kompozit Malzemeden Mamul İnsansız Hava Aracı Parçalarının Yapısal Analizi. Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
- Patterson JB, Grenestedt JL, 2018. Manufacturing of a composite wing with internal structure in one cure cycle. Composite Structures, 206: 601-609.
- Romano F, Fiori J, Mercurio, U, 2009. Structural design and test capability of a CFRP aileron. Composite Structures, 88 (3): 333–341.
- Sakarya A, 2011. Multidisciplinary Design of An Unmanned Aerial Vehicle Wing. Middle East Technical University Graduate School of Natural and Applied Sciences, Master Thesis (Printed).
- Sakarya E, 2010. Structural Design and Evaluation of an Adaptive Camber Wing. Middle East Technical University Graduate School of Natural and Applied Sciences, Master Thesis (Printed).
- Sepe R, Citarella R, De Luca A, Armentani E, 2017. Numerical and Experimental Investigation on the Structural Behaviour of a Horizontal Stabilizer under Critical Aerodynamic Loading Conditions. Advances in Materials Science and Engineering, ID 1092701.
- Soutis C, 2005. Carbon fiber reinforced plastics in aircraft construction. Materials Science and Engineering:A, 412 (1-2): 171–176.
- Starke Jr EA, Staley JT, 1996. Application of modern aluminum alloys to aircraft. Progress in erospace Sciences, 32 (2-3): 131–172.
- Starnes Jr JH, Haftka RT, 1979. Preliminary Design of Composite Wings for Buckling, Strength, and Displacement Constraints. Journal of Aircraft, 16 (8): 564-570.
- Ünlüsoy L, 2010. Structural Design and Analysis of The Mission Adaptive Wings of An Unmanned Aerial Vehicle. Middle East Technical University Graduate School of Natural and Applied Sciences, Master Thesis (Printed).
- Vasiliev VV, Morozov EV, 2001. Mechanics and Analysis of Composite Materials. Elsevier Science Ltd., pp. 271-283, The Boulevard Langford Lane Kidlington Oxford-UK.