Differential Equations of Rectifying Curves and Focal Curves in $\mathbb{E}^{n}$
Year 2022,
, 8 - 15, 30.04.2022
Beyhan Yılmaz
,
İsmail Gök
,
Yusuf Yaylı
Abstract
In this present paper, rectifying curves are re-characterized in a shorter and simpler way using harmonic curvatures and some relations between rectifying curves and focal curves are found in terms of their harmonic curvature functions in $n-$dimensional Euclidean space. Then, a rectifying Salkowski curve, which is the focal curve of a given space curve is investigated. Finally, some figures related to the theory are given in the case $n=3$.
References
- [1] D. S. Kim, H. S. Chung, K. H. Cho, Space curves satisfying t=k = as+b, Honam Mathematical J., 15(1) (1993), 5-9.
- [2] B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly, 110(2) (2003), 147-152.
- [3] B. Y. Chen, F. Dillen, Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Acad. Sinica, 33(2) (2005), 77-90.
- [4] B. Y. Chen, Rectifying curves and geodesics on a cone in the Euclidean 3space, Tamkang J. Math., 48(2) (2017), 209-214.
- [5] S. Cambie, W. Goemans, I. Van Den Bussche, Rectifying curves in the ndimensional Euclidean space, Turk. J. Math., 40 (2016), 210-223.
- [6] K. ˙Ilarslan, E. Nesovic, M. Petrovic-Torgasev, Some characterizations of rectifying curves in the Minkowski 3space, Novi. Sad. J. Math., 33(2) (2003),
23-32.
- [7] K. ˙Ilarslan, E. Nesovic, On rectifying curves as centrodes and extremal curves in the Minkowski in the Minkowski 3space, Novi. Sad. J. Math., 37(1)
(2007), 53-64.
- [8] E. O¨ zdamar, H. H. Hacisalihog˘lu, A characterization of inclined curves in Euclidean nspace, Communication de la facult´e des sciences de
L’Universit´e d’Ankara, 24 (1975), 15-22.
- [9] C¸ . Camci, L. Kula, K. ˙Ilarslan, H. H. Hacisaliho˘glu, On the eplicit characterization of curves on a (n1)sphere in Sn, Int. Electron. J. Geom., 6(2)
(2013), 63-69.
- [10] F. Ertem Kaya, Y. Yaylı, H. H. Hacisaliho˘glu, Harmonic curvature of a strip in E3, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 59(2) (2010),
1-14.
- [11] C¸ . Camcı, K. ˙Ilarslan,L. Kula, H. H. Hacisaliho˘glu, Harmonic curvatures and generalized helices in En, Chaos Solit. Fractals., 40 (2007), 1-7.
- [12] ˙I. G¨ok, C¸ . Camcı, H. H. Hacisaliho˘glu, Vnslant helices in Euclidean nspace En, Math. Commun., 14(2) (2009), 317-329.
- [13] ˙I. G¨ok, C¸ . Camcı, H. H. Hacisaliho˘glu, Vnslant helices in Minkowski nspace E1n
, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 58(1) (2009),
29-38.
- [14] N. Ekmekc¸i, H. H. Hacisaliho˘glu and K. ˙Ilarslan, Harmonic curvatures in Lorentzian Space Bull. Malaysian Math. Sc. Soc. 23 (2000), 173-179.
- [15] M. K¨ulahcı, M. Bektas¸ and M. Erg¨ut, On Harmonic curvatures of null curves of the AW(k)-type in Lorentzian Space Naturforsch, 63(a) (2008),
248-252.)
- [16] E. ˙Iyig¨un, K. Arslan, On Harmonic curvatures of curves in Lorentzian NSpace Commun. Fac. Sci. Univ. Ank. Series A1, 54(1) (2005), 29-34.
- [17] R. Uribe-Vargas, On vertices, focal curvatures and differential geometry of space curves, Bull. Brazilian Math. Soc., 36 (2005), 285-307.
- [18] G. O¨ ztu¨rk, K. Arslan, On focal curves in Euclidean nspace Rn, Novi Sad J Math., 46(1) (2016), 35-44.
- [19] G. O¨ zturk, B. Bulca, B. Bayram, K. Arslan, Focal representation of kslant Helices in Em+1, Acta Univ. Sapientiae, Mathematica, 7(2) (2015), 200-209.
- [20] H. Gluk, Higher curvatures of curves in Euclidean space, Amer. Math. Month., 73 (1966), 699-704.
- [21] H. H. Hacisaliho˘glu, Diferensiyel Geometri, Ankara University, Faculty of Science Press, 1993.
- [22] E. Salkowski, Zur Transformation von Raumkurven, Mathematische Annalen, 4(66)(1909), 517–557.
- [23] J. Monterde, Salkowski curves revisited: A family of curves with constant curvature and non-constant torsion, Comput. Aided Geom. Des., 26 (2009),
271–278.
- [24] A. S¸ enol, E. Zıplar, Y. Yaylı, ˙I. G¨ok, A new approach on helices in Euclidean nspace, Math. Commun., 18 (2013), 241-256.
Year 2022,
, 8 - 15, 30.04.2022
Beyhan Yılmaz
,
İsmail Gök
,
Yusuf Yaylı
References
- [1] D. S. Kim, H. S. Chung, K. H. Cho, Space curves satisfying t=k = as+b, Honam Mathematical J., 15(1) (1993), 5-9.
- [2] B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly, 110(2) (2003), 147-152.
- [3] B. Y. Chen, F. Dillen, Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Acad. Sinica, 33(2) (2005), 77-90.
- [4] B. Y. Chen, Rectifying curves and geodesics on a cone in the Euclidean 3space, Tamkang J. Math., 48(2) (2017), 209-214.
- [5] S. Cambie, W. Goemans, I. Van Den Bussche, Rectifying curves in the ndimensional Euclidean space, Turk. J. Math., 40 (2016), 210-223.
- [6] K. ˙Ilarslan, E. Nesovic, M. Petrovic-Torgasev, Some characterizations of rectifying curves in the Minkowski 3space, Novi. Sad. J. Math., 33(2) (2003),
23-32.
- [7] K. ˙Ilarslan, E. Nesovic, On rectifying curves as centrodes and extremal curves in the Minkowski in the Minkowski 3space, Novi. Sad. J. Math., 37(1)
(2007), 53-64.
- [8] E. O¨ zdamar, H. H. Hacisalihog˘lu, A characterization of inclined curves in Euclidean nspace, Communication de la facult´e des sciences de
L’Universit´e d’Ankara, 24 (1975), 15-22.
- [9] C¸ . Camci, L. Kula, K. ˙Ilarslan, H. H. Hacisaliho˘glu, On the eplicit characterization of curves on a (n1)sphere in Sn, Int. Electron. J. Geom., 6(2)
(2013), 63-69.
- [10] F. Ertem Kaya, Y. Yaylı, H. H. Hacisaliho˘glu, Harmonic curvature of a strip in E3, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 59(2) (2010),
1-14.
- [11] C¸ . Camcı, K. ˙Ilarslan,L. Kula, H. H. Hacisaliho˘glu, Harmonic curvatures and generalized helices in En, Chaos Solit. Fractals., 40 (2007), 1-7.
- [12] ˙I. G¨ok, C¸ . Camcı, H. H. Hacisaliho˘glu, Vnslant helices in Euclidean nspace En, Math. Commun., 14(2) (2009), 317-329.
- [13] ˙I. G¨ok, C¸ . Camcı, H. H. Hacisaliho˘glu, Vnslant helices in Minkowski nspace E1n
, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 58(1) (2009),
29-38.
- [14] N. Ekmekc¸i, H. H. Hacisaliho˘glu and K. ˙Ilarslan, Harmonic curvatures in Lorentzian Space Bull. Malaysian Math. Sc. Soc. 23 (2000), 173-179.
- [15] M. K¨ulahcı, M. Bektas¸ and M. Erg¨ut, On Harmonic curvatures of null curves of the AW(k)-type in Lorentzian Space Naturforsch, 63(a) (2008),
248-252.)
- [16] E. ˙Iyig¨un, K. Arslan, On Harmonic curvatures of curves in Lorentzian NSpace Commun. Fac. Sci. Univ. Ank. Series A1, 54(1) (2005), 29-34.
- [17] R. Uribe-Vargas, On vertices, focal curvatures and differential geometry of space curves, Bull. Brazilian Math. Soc., 36 (2005), 285-307.
- [18] G. O¨ ztu¨rk, K. Arslan, On focal curves in Euclidean nspace Rn, Novi Sad J Math., 46(1) (2016), 35-44.
- [19] G. O¨ zturk, B. Bulca, B. Bayram, K. Arslan, Focal representation of kslant Helices in Em+1, Acta Univ. Sapientiae, Mathematica, 7(2) (2015), 200-209.
- [20] H. Gluk, Higher curvatures of curves in Euclidean space, Amer. Math. Month., 73 (1966), 699-704.
- [21] H. H. Hacisaliho˘glu, Diferensiyel Geometri, Ankara University, Faculty of Science Press, 1993.
- [22] E. Salkowski, Zur Transformation von Raumkurven, Mathematische Annalen, 4(66)(1909), 517–557.
- [23] J. Monterde, Salkowski curves revisited: A family of curves with constant curvature and non-constant torsion, Comput. Aided Geom. Des., 26 (2009),
271–278.
- [24] A. S¸ enol, E. Zıplar, Y. Yaylı, ˙I. G¨ok, A new approach on helices in Euclidean nspace, Math. Commun., 18 (2013), 241-256.