[1] S. Abbas, W. Albarakati and M. Benchohra, Successive approximations for functional evolution equations and inclusions, J. Nonlinear Funct. Anal., Vol. 2017 (2017), Article ID 39, pp. 1-13.
[2] S. Abbas and M. Benchohra, Advanced Functional Evolution Equations and Inclusions, Springer, Cham, 2015.
[3] N. U. Ahmed, Semigroup Theory with Applications to Systems and Control, Pitman Research Notes in Mathematics Series, 246. Longman Scientific & Technical, Harlow; John Wiley & Sons, New York, 1991.
[4] S. Baghli and M. Benchohra, Global uniqueness results for partial functional and neutral functional evolution equations with infinite delay, Differential Integral Equations, 23 (2010), 31–50.
[5] S. Baghli and M. Benchohra, Multivalued evolution equations with infinite delay in Fr´echet spaces, Electron. J. Qual. Theo. Differ. Equ. 2008, No. 33, 24 pp.
[6] A. Baliki and M. Benchohra, Global existence and asymptotic behaviour for functional evolution equations, J. Appl. Anal. Comput. 4 (2) (2014), 129–138.
[7] A. Baliki and M. Benchohra, Global existence and stability for neutral functional evolution equations, Rev. Roumaine Math. Pures Appl. LX (1) (2015), 71-82.
[8] M. Benchohra and I. Medjadj, Global existence results for second order neutral functional differential equation with state-dependent delay. Comment. Math. Univ. Carolin. 57 (2016), 169-183.
[9] D. Bothe, Multivalued perturbation of m-accretive differential inclusions, Isr. J. Math. 108 (1998), 109-138.
[10] S. Dudek, Fixed point theorems in Fr´echet Algebras and Fr´echet spaces and applications to nonlinear integral equations, Appl. Anal. Discrete Math., 11 (2017), 340-357.
[11] S. Dudek and L. Olszowy, Continuous dependence of the solutions of nonlinear integral quadratic Volterra equation on the parameter, J. Funct. Spaces, V. 2015, Article ID 471235, 9 pages.
[12] A. Freidman, Partial Differential Equations, Holt, Rinehat and Winston, New York, 1969.
[13] M. Frigon and A. Granas, R´esultats de type Leray-Schauder pour des contractions sur des espaces de Fr´echet, Ann. Sci. Math. Qu´ebec 22 (2) (1998), 161-168.
[14] S. Heikkila and V. Lakshmikantham, Monotone Iterative Technique for Nonlinear Discontinuous Differential Equations, Marcel Dekker Inc., New York, 1994.
[15] H. M¨onch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4(1980), 985-999.
[16] L. Olszowy and S. We¸drychowicz, Mild solutions of semilinear evolution equation on an unbounded interval and their applications, Nonlinear Anal. 72 (2010), 2119-2126.
[17] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
[18] J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences 119, Springer-Verlag, New York, 1996. [19] K. Yosida, Functional Analysis, 6th edn. Springer-Verlag, Berlin, 1980.
Evolution equations in Fréchet spaces
Year 2018,
Volume: 1 Issue: 1, 33 - 38, 27.05.2018
This paper deals with the existence of mild solutions for a class of evolution equations. The technique used is a generalization of the classical Darbo fixed point theorem for Fr\'{e}chet spaces associated with the concept of measure of noncompactness.
[1] S. Abbas, W. Albarakati and M. Benchohra, Successive approximations for functional evolution equations and inclusions, J. Nonlinear Funct. Anal., Vol. 2017 (2017), Article ID 39, pp. 1-13.
[2] S. Abbas and M. Benchohra, Advanced Functional Evolution Equations and Inclusions, Springer, Cham, 2015.
[3] N. U. Ahmed, Semigroup Theory with Applications to Systems and Control, Pitman Research Notes in Mathematics Series, 246. Longman Scientific & Technical, Harlow; John Wiley & Sons, New York, 1991.
[4] S. Baghli and M. Benchohra, Global uniqueness results for partial functional and neutral functional evolution equations with infinite delay, Differential Integral Equations, 23 (2010), 31–50.
[5] S. Baghli and M. Benchohra, Multivalued evolution equations with infinite delay in Fr´echet spaces, Electron. J. Qual. Theo. Differ. Equ. 2008, No. 33, 24 pp.
[6] A. Baliki and M. Benchohra, Global existence and asymptotic behaviour for functional evolution equations, J. Appl. Anal. Comput. 4 (2) (2014), 129–138.
[7] A. Baliki and M. Benchohra, Global existence and stability for neutral functional evolution equations, Rev. Roumaine Math. Pures Appl. LX (1) (2015), 71-82.
[8] M. Benchohra and I. Medjadj, Global existence results for second order neutral functional differential equation with state-dependent delay. Comment. Math. Univ. Carolin. 57 (2016), 169-183.
[9] D. Bothe, Multivalued perturbation of m-accretive differential inclusions, Isr. J. Math. 108 (1998), 109-138.
[10] S. Dudek, Fixed point theorems in Fr´echet Algebras and Fr´echet spaces and applications to nonlinear integral equations, Appl. Anal. Discrete Math., 11 (2017), 340-357.
[11] S. Dudek and L. Olszowy, Continuous dependence of the solutions of nonlinear integral quadratic Volterra equation on the parameter, J. Funct. Spaces, V. 2015, Article ID 471235, 9 pages.
[12] A. Freidman, Partial Differential Equations, Holt, Rinehat and Winston, New York, 1969.
[13] M. Frigon and A. Granas, R´esultats de type Leray-Schauder pour des contractions sur des espaces de Fr´echet, Ann. Sci. Math. Qu´ebec 22 (2) (1998), 161-168.
[14] S. Heikkila and V. Lakshmikantham, Monotone Iterative Technique for Nonlinear Discontinuous Differential Equations, Marcel Dekker Inc., New York, 1994.
[15] H. M¨onch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4(1980), 985-999.
[16] L. Olszowy and S. We¸drychowicz, Mild solutions of semilinear evolution equation on an unbounded interval and their applications, Nonlinear Anal. 72 (2010), 2119-2126.
[17] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
[18] J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences 119, Springer-Verlag, New York, 1996. [19] K. Yosida, Functional Analysis, 6th edn. Springer-Verlag, Berlin, 1980.
Abbas, S., Arara, A., Benchohra, M., Mesri, F. (2018). Evolution equations in Fréchet spaces. Journal of Mathematical Sciences and Modelling, 1(1), 33-38. https://doi.org/10.33187/jmsm.419917
AMA
Abbas S, Arara A, Benchohra M, Mesri F. Evolution equations in Fréchet spaces. Journal of Mathematical Sciences and Modelling. May 2018;1(1):33-38. doi:10.33187/jmsm.419917
Chicago
Abbas, Said, Amaria Arara, Mouffak Benchohra, and Fatima Mesri. “Evolution Equations in Fréchet Spaces”. Journal of Mathematical Sciences and Modelling 1, no. 1 (May 2018): 33-38. https://doi.org/10.33187/jmsm.419917.
EndNote
Abbas S, Arara A, Benchohra M, Mesri F (May 1, 2018) Evolution equations in Fréchet spaces. Journal of Mathematical Sciences and Modelling 1 1 33–38.
IEEE
S. Abbas, A. Arara, M. Benchohra, and F. Mesri, “Evolution equations in Fréchet spaces”, Journal of Mathematical Sciences and Modelling, vol. 1, no. 1, pp. 33–38, 2018, doi: 10.33187/jmsm.419917.
ISNAD
Abbas, Said et al. “Evolution Equations in Fréchet Spaces”. Journal of Mathematical Sciences and Modelling 1/1 (May 2018), 33-38. https://doi.org/10.33187/jmsm.419917.
JAMA
Abbas S, Arara A, Benchohra M, Mesri F. Evolution equations in Fréchet spaces. Journal of Mathematical Sciences and Modelling. 2018;1:33–38.
MLA
Abbas, Said et al. “Evolution Equations in Fréchet Spaces”. Journal of Mathematical Sciences and Modelling, vol. 1, no. 1, 2018, pp. 33-38, doi:10.33187/jmsm.419917.
Vancouver
Abbas S, Arara A, Benchohra M, Mesri F. Evolution equations in Fréchet spaces. Journal of Mathematical Sciences and Modelling. 2018;1(1):33-8.