Araştırma Makalesi
BibTex RIS Kaynak Göster

Numerical Solution for Hybrid Fuzzy Differential Equation by Fifth Order Runge-Kutta Nystrom Method

Yıl 2019, Cilt: 2 Sayı: 1, 39 - 50, 20.04.2019
https://doi.org/10.33187/jmsm.433538

Öz

This  study  discusses a numerical methods for hybrid fuzzy differential equations by fifth order RK Nystrom Method for fuzzy differential equations. We prove the convergence result and give numerical examples to illustrate the theory.

Kaynakça

  • [1] S. L. Chang and A. Zadeh, On Fuzzy Mapping and Control, IEEEE Trans. Systems Man Cybernet 2 (1972), 30–34.
  • [2] D. Dubois and H.Prade, Towards Fuzzy Differential Calculus: Part 3, Differentiation, Fuzzy Sets and System, 8 (1982,) 225–233.
  • [3] M. L. Puri, D.A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl., 91 (1983), 321–325.
  • [4] R. Goetschel, W.Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31–43.
  • [5] A. Kandel, W.J. Byatt, Fuzzy Differential Equations, in Proceedings of the International Conference on Cybernetics and Society, Tokyo, (1978) 1213–1216.
  • [6] O. Kaleva, Fuzzy Differential Equations, Fuzzy Sets and Systems, 24 (1987), 301–317.
  • [7] O. Kaleva, The Cauchy problem for Fuzzy Differential Equations, Fuzzy Sets and Systems, 35 (1990), 389–396.
  • [8] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24 (1987), 319–330.
  • [9] O. He, W. Yi, On fuzzy differential Equations, Fuzzy Sets Systems, 24 (1989), 321–325.
  • [10] P. Kloedan, Remarks on Piano-like theorems for fuzzy differential Equations,Fuzzy Sets and Systems, 44 (1991), 161–164.
  • [11] S. Pederson, M. Sambandham, Numerical solution to Hybrid fuzzy systems, Mathematical and Computer Modelling, 45 (2007), 1133–1144.
  • [12] L. J. Jowers, J. J. Buckley K. D. Reilly, Simulating continuous fuzzy systems, Inform. Sci., 177 (2007), 436–448.
  • [13] T. Jayakumar, K. Kanakarajan, Numerical Solution for Hybrid Fuzzy System by Improved Euler Method, International Journal of Applied Mathematical Science, 38 (2012), 1847–1862.
  • [14] T. Jayakumar, K. Kanakarajan, Numerical Solution for Hybrid Fuzzy System by Runge Kutta Verner Method, Far East Journal of Applied Mathematics, 86 (2014), 93–115.
  • [15] T. Jayakumar, K. Kanakarajan, Numerical Solution for Hybrid Fuzzy System by Runge Kutta Method of order five, Applied Mathematical Science, 6 (2012), 69–72.
  • [16] K. Kanakarajan, M.Sambath, Numerical Solution for hybrid fuzzy differential equations by improved predictor-corrector method, Nonlinear Studies, 19 (2012), 171–185.
  • [17] M. Sambandham, Perturbed Lyapunov-like functions and Hybrid Fuzzy Differential Equations, Int. J. Hybrid Syst., 2 (2002) 23-34.
  • [18] C. X. Wu, M. Ma, Embedding problem of fuzzy number space Part I, Fuzzy Sets Syst.,44 (1991) 33-38.
  • [19] J. J.Bukley, T. Feuring, Fuzzy Differential Equations, Fuzzy Sets Syst., 110 (200) 43-54.
Yıl 2019, Cilt: 2 Sayı: 1, 39 - 50, 20.04.2019
https://doi.org/10.33187/jmsm.433538

Öz

Kaynakça

  • [1] S. L. Chang and A. Zadeh, On Fuzzy Mapping and Control, IEEEE Trans. Systems Man Cybernet 2 (1972), 30–34.
  • [2] D. Dubois and H.Prade, Towards Fuzzy Differential Calculus: Part 3, Differentiation, Fuzzy Sets and System, 8 (1982,) 225–233.
  • [3] M. L. Puri, D.A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl., 91 (1983), 321–325.
  • [4] R. Goetschel, W.Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31–43.
  • [5] A. Kandel, W.J. Byatt, Fuzzy Differential Equations, in Proceedings of the International Conference on Cybernetics and Society, Tokyo, (1978) 1213–1216.
  • [6] O. Kaleva, Fuzzy Differential Equations, Fuzzy Sets and Systems, 24 (1987), 301–317.
  • [7] O. Kaleva, The Cauchy problem for Fuzzy Differential Equations, Fuzzy Sets and Systems, 35 (1990), 389–396.
  • [8] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24 (1987), 319–330.
  • [9] O. He, W. Yi, On fuzzy differential Equations, Fuzzy Sets Systems, 24 (1989), 321–325.
  • [10] P. Kloedan, Remarks on Piano-like theorems for fuzzy differential Equations,Fuzzy Sets and Systems, 44 (1991), 161–164.
  • [11] S. Pederson, M. Sambandham, Numerical solution to Hybrid fuzzy systems, Mathematical and Computer Modelling, 45 (2007), 1133–1144.
  • [12] L. J. Jowers, J. J. Buckley K. D. Reilly, Simulating continuous fuzzy systems, Inform. Sci., 177 (2007), 436–448.
  • [13] T. Jayakumar, K. Kanakarajan, Numerical Solution for Hybrid Fuzzy System by Improved Euler Method, International Journal of Applied Mathematical Science, 38 (2012), 1847–1862.
  • [14] T. Jayakumar, K. Kanakarajan, Numerical Solution for Hybrid Fuzzy System by Runge Kutta Verner Method, Far East Journal of Applied Mathematics, 86 (2014), 93–115.
  • [15] T. Jayakumar, K. Kanakarajan, Numerical Solution for Hybrid Fuzzy System by Runge Kutta Method of order five, Applied Mathematical Science, 6 (2012), 69–72.
  • [16] K. Kanakarajan, M.Sambath, Numerical Solution for hybrid fuzzy differential equations by improved predictor-corrector method, Nonlinear Studies, 19 (2012), 171–185.
  • [17] M. Sambandham, Perturbed Lyapunov-like functions and Hybrid Fuzzy Differential Equations, Int. J. Hybrid Syst., 2 (2002) 23-34.
  • [18] C. X. Wu, M. Ma, Embedding problem of fuzzy number space Part I, Fuzzy Sets Syst.,44 (1991) 33-38.
  • [19] J. J.Bukley, T. Feuring, Fuzzy Differential Equations, Fuzzy Sets Syst., 110 (200) 43-54.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Muthukumar Thangamuthu

Jayakumar Thippan Bu kişi benim

Yayımlanma Tarihi 20 Nisan 2019
Gönderilme Tarihi 13 Haziran 2018
Kabul Tarihi 22 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 1

Kaynak Göster

APA Thangamuthu, M., & Thippan, J. (2019). Numerical Solution for Hybrid Fuzzy Differential Equation by Fifth Order Runge-Kutta Nystrom Method. Journal of Mathematical Sciences and Modelling, 2(1), 39-50. https://doi.org/10.33187/jmsm.433538
AMA Thangamuthu M, Thippan J. Numerical Solution for Hybrid Fuzzy Differential Equation by Fifth Order Runge-Kutta Nystrom Method. Journal of Mathematical Sciences and Modelling. Nisan 2019;2(1):39-50. doi:10.33187/jmsm.433538
Chicago Thangamuthu, Muthukumar, ve Jayakumar Thippan. “Numerical Solution for Hybrid Fuzzy Differential Equation by Fifth Order Runge-Kutta Nystrom Method”. Journal of Mathematical Sciences and Modelling 2, sy. 1 (Nisan 2019): 39-50. https://doi.org/10.33187/jmsm.433538.
EndNote Thangamuthu M, Thippan J (01 Nisan 2019) Numerical Solution for Hybrid Fuzzy Differential Equation by Fifth Order Runge-Kutta Nystrom Method. Journal of Mathematical Sciences and Modelling 2 1 39–50.
IEEE M. Thangamuthu ve J. Thippan, “Numerical Solution for Hybrid Fuzzy Differential Equation by Fifth Order Runge-Kutta Nystrom Method”, Journal of Mathematical Sciences and Modelling, c. 2, sy. 1, ss. 39–50, 2019, doi: 10.33187/jmsm.433538.
ISNAD Thangamuthu, Muthukumar - Thippan, Jayakumar. “Numerical Solution for Hybrid Fuzzy Differential Equation by Fifth Order Runge-Kutta Nystrom Method”. Journal of Mathematical Sciences and Modelling 2/1 (Nisan 2019), 39-50. https://doi.org/10.33187/jmsm.433538.
JAMA Thangamuthu M, Thippan J. Numerical Solution for Hybrid Fuzzy Differential Equation by Fifth Order Runge-Kutta Nystrom Method. Journal of Mathematical Sciences and Modelling. 2019;2:39–50.
MLA Thangamuthu, Muthukumar ve Jayakumar Thippan. “Numerical Solution for Hybrid Fuzzy Differential Equation by Fifth Order Runge-Kutta Nystrom Method”. Journal of Mathematical Sciences and Modelling, c. 2, sy. 1, 2019, ss. 39-50, doi:10.33187/jmsm.433538.
Vancouver Thangamuthu M, Thippan J. Numerical Solution for Hybrid Fuzzy Differential Equation by Fifth Order Runge-Kutta Nystrom Method. Journal of Mathematical Sciences and Modelling. 2019;2(1):39-50.

28627    Journal of Mathematical Sciences and Modelling28626


      3090029232  13487

28628  JMSM'de yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.