In this article, two methods are proposed to solve the fractional Cahn-Hilliard equation. This model describes the process of phase separation with nonlocal memory effects. Cahn-Hilliard equations have numerous applications in real-world scenarios, e.g., material sciences, cell biology, and image processing. Different types of solutions have been obtained. For this, the fractional complex transformation has been used to convert fractional differential equation to ordinary differential equation of integer order. As a result, these solutions are new solutions that do not exist in the literature.
Conformable derivatives Exact solution Nonlinear water waves Travelling wave solutions
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 31 Ağustos 2022 |
Gönderilme Tarihi | 27 Temmuz 2022 |
Kabul Tarihi | 15 Ağustos 2022 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 5 Sayı: 2 |
Journal of Mathematical Sciences and Modelling
JMSM'de yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.