Research Article
BibTex RIS Cite
Year 2024, Volume: 7 Issue: 2, 75 - 81, 31.08.2024
https://doi.org/10.33187/jmsm.1426590

Abstract

References

  • [1] R.M. Miura, C.S. Gardner, M.D. Kruskal, Korteweg de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys., 9 (1968), 1204-1209.
  • [2] S. Watanabe, Ion acoustic soliton in plasma with negative ion, J. Phys. Soc. Japan, 53 (1984), 950-956.
  • [3] M.S. Ruderman, T. Talipova, E. Pelinovsky, Dynamics of modulationally unstable ion-acoustic wavepackets in plasmas with negative ions, J. Plasma Phys., 74 (2008), 639-656.
  • [4] R. Grimshaw, Environmental Stratified Flows, Topics in Environmental Fluid Mechanics, Kluwer, 2002.
  • [5] E. Demler, A. Maltsev, Semiclassical solitons in strongly correlated systems of ultracold bosonic atoms in optical lattices, Ann. Phys., 326 (2011), 1775-1805.
  • [6] A.H. Khater, A.A. Abdallah, O.H. El-Kalaawy, D.K. Callebaut, Backlund transformations, a simple transformation and exact solutions for dust-acoustic solitary waves in dusty plasma consisting of cold dust particles and two-temperature isothermal ions, Phys. Plasmas, 6 (1999), 4542-4547.
  • [7] R. Grimshaw, D. Pelinovsky, E. Pelinovsky, T. Talipova, Wave group dynamics in weakly nonlinear long-wave models, Phys. D, 159 (2001), 35-37.
  • [8] K.R. Helfrich, W.K. Melville, Long nonlinear internal waves, Annu. Rev. Fluid Mech., 38 (2006), 395-425.
  • [9] J.R. Apel, L.A. Ostrovsky, Y.A. Stepanyants, J.F. Lynch, Internal solitons in the ocean and their effect on underwater sound, J. Acoust. Soc. Am., 121 (2007), 695-722
  • [10] M. Wadati, Wave propagation in nonlinear lattice III, J. Phys. Soc. Jpn., 38 (1975), 681-686.
  • [11] M. Coffey On series expansions giving closed form solutions of Korteweg de Vries like equations, J. Appl. Math., 50(6) (1990), 1580-1592.
  • [12] S.Y. Lou, L.L Chen, Solitary wave solutions and cnoidal wave solutions to the combined KdV and mKdV equation, Math Meth. Appl. Sci., 17 (1994), 339-347.
  • [13] J Zhang, New solitary wave solution of the combined KdV and mKdV equation, Int. Jour. Theo. Phys., 37 (1998), 1541-1546.
  • [14] L. Lin, S. Zhu, Y. Xu, Y. Shi, Exact solutions of Gardner equations through tanh coth method, Appl. Math., 7 (2016), 2374-2381.
  • [15] B. Ghanbari, D. Baleanu, New solutions of Gardner’s equation using two analytical methods, Front. In Phys., 7 (2015), 1-15.
  • [16] M. Bokaeeyan, A. Ankiewicz, N. Akhmediev, Bright and dark rogue internal waves, the Gardner equation approach, Phys. Rev. E, 99 (2019), 062224-1-7.
  • [17] A. Ankiewicz, M. Bokaeeyan, Integral relations for rogue wave formations of Gardner equation, Nonlinear Dyn, 99 (2020), 2939-2944.
  • [18] P. Gaillard, The mKdV equation and multi-parameters rational solutions, Wave Motion, 100, (2021), 102667-1-9.

N-order solutions to the Gardner equation in terms of Wronskians

Year 2024, Volume: 7 Issue: 2, 75 - 81, 31.08.2024
https://doi.org/10.33187/jmsm.1426590

Abstract

$N$-order solutions to the Gardner equation (G) are given in terms of Wronskians of order $N$ depending on $2N$ real parameters. We get solutions expressed with trigonometric or hyperbolic functions.

When one of the parameters goes to $0$, we succeed to get for each positive integer $N$, rational solutions as a quotient of polynomials in $x$ and $t$ depending on $2N$ real parameters. We construct explicit expressions of these rational solutions for the first orders.

References

  • [1] R.M. Miura, C.S. Gardner, M.D. Kruskal, Korteweg de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys., 9 (1968), 1204-1209.
  • [2] S. Watanabe, Ion acoustic soliton in plasma with negative ion, J. Phys. Soc. Japan, 53 (1984), 950-956.
  • [3] M.S. Ruderman, T. Talipova, E. Pelinovsky, Dynamics of modulationally unstable ion-acoustic wavepackets in plasmas with negative ions, J. Plasma Phys., 74 (2008), 639-656.
  • [4] R. Grimshaw, Environmental Stratified Flows, Topics in Environmental Fluid Mechanics, Kluwer, 2002.
  • [5] E. Demler, A. Maltsev, Semiclassical solitons in strongly correlated systems of ultracold bosonic atoms in optical lattices, Ann. Phys., 326 (2011), 1775-1805.
  • [6] A.H. Khater, A.A. Abdallah, O.H. El-Kalaawy, D.K. Callebaut, Backlund transformations, a simple transformation and exact solutions for dust-acoustic solitary waves in dusty plasma consisting of cold dust particles and two-temperature isothermal ions, Phys. Plasmas, 6 (1999), 4542-4547.
  • [7] R. Grimshaw, D. Pelinovsky, E. Pelinovsky, T. Talipova, Wave group dynamics in weakly nonlinear long-wave models, Phys. D, 159 (2001), 35-37.
  • [8] K.R. Helfrich, W.K. Melville, Long nonlinear internal waves, Annu. Rev. Fluid Mech., 38 (2006), 395-425.
  • [9] J.R. Apel, L.A. Ostrovsky, Y.A. Stepanyants, J.F. Lynch, Internal solitons in the ocean and their effect on underwater sound, J. Acoust. Soc. Am., 121 (2007), 695-722
  • [10] M. Wadati, Wave propagation in nonlinear lattice III, J. Phys. Soc. Jpn., 38 (1975), 681-686.
  • [11] M. Coffey On series expansions giving closed form solutions of Korteweg de Vries like equations, J. Appl. Math., 50(6) (1990), 1580-1592.
  • [12] S.Y. Lou, L.L Chen, Solitary wave solutions and cnoidal wave solutions to the combined KdV and mKdV equation, Math Meth. Appl. Sci., 17 (1994), 339-347.
  • [13] J Zhang, New solitary wave solution of the combined KdV and mKdV equation, Int. Jour. Theo. Phys., 37 (1998), 1541-1546.
  • [14] L. Lin, S. Zhu, Y. Xu, Y. Shi, Exact solutions of Gardner equations through tanh coth method, Appl. Math., 7 (2016), 2374-2381.
  • [15] B. Ghanbari, D. Baleanu, New solutions of Gardner’s equation using two analytical methods, Front. In Phys., 7 (2015), 1-15.
  • [16] M. Bokaeeyan, A. Ankiewicz, N. Akhmediev, Bright and dark rogue internal waves, the Gardner equation approach, Phys. Rev. E, 99 (2019), 062224-1-7.
  • [17] A. Ankiewicz, M. Bokaeeyan, Integral relations for rogue wave formations of Gardner equation, Nonlinear Dyn, 99 (2020), 2939-2944.
  • [18] P. Gaillard, The mKdV equation and multi-parameters rational solutions, Wave Motion, 100, (2021), 102667-1-9.
There are 18 citations in total.

Details

Primary Language English
Subjects Partial Differential Equations
Journal Section Articles
Authors

Pierre Gaillard 0000-0002-7073-8284

Early Pub Date July 16, 2024
Publication Date August 31, 2024
Submission Date January 27, 2024
Acceptance Date June 23, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Gaillard, P. (2024). N-order solutions to the Gardner equation in terms of Wronskians. Journal of Mathematical Sciences and Modelling, 7(2), 75-81. https://doi.org/10.33187/jmsm.1426590
AMA Gaillard P. N-order solutions to the Gardner equation in terms of Wronskians. Journal of Mathematical Sciences and Modelling. August 2024;7(2):75-81. doi:10.33187/jmsm.1426590
Chicago Gaillard, Pierre. “N-Order Solutions to the Gardner Equation in Terms of Wronskians”. Journal of Mathematical Sciences and Modelling 7, no. 2 (August 2024): 75-81. https://doi.org/10.33187/jmsm.1426590.
EndNote Gaillard P (August 1, 2024) N-order solutions to the Gardner equation in terms of Wronskians. Journal of Mathematical Sciences and Modelling 7 2 75–81.
IEEE P. Gaillard, “N-order solutions to the Gardner equation in terms of Wronskians”, Journal of Mathematical Sciences and Modelling, vol. 7, no. 2, pp. 75–81, 2024, doi: 10.33187/jmsm.1426590.
ISNAD Gaillard, Pierre. “N-Order Solutions to the Gardner Equation in Terms of Wronskians”. Journal of Mathematical Sciences and Modelling 7/2 (August 2024), 75-81. https://doi.org/10.33187/jmsm.1426590.
JAMA Gaillard P. N-order solutions to the Gardner equation in terms of Wronskians. Journal of Mathematical Sciences and Modelling. 2024;7:75–81.
MLA Gaillard, Pierre. “N-Order Solutions to the Gardner Equation in Terms of Wronskians”. Journal of Mathematical Sciences and Modelling, vol. 7, no. 2, 2024, pp. 75-81, doi:10.33187/jmsm.1426590.
Vancouver Gaillard P. N-order solutions to the Gardner equation in terms of Wronskians. Journal of Mathematical Sciences and Modelling. 2024;7(2):75-81.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.