Research Article
BibTex RIS Cite

Solutions of the Fractional Combined KdV-mKdV Equation Using the Special Generalized Hyperbolic and Trigonometric Functions

Year 2025, Volume: 14 Issue: 1, 1 - 13, 30.04.2025
https://doi.org/10.54187/jnrs.1619374

Abstract

The combined KdV-mKdV equation is one of the essential equations used in soliton physics. In this study, the analytical solutions of the space-time fractional combined KdV-mKdV equation are gained using the Sardar sub-equation approach. In this equation, the fractional derivatives are given in a conformable sense. A clue on how we can convert the fractional partial differential equation into an ordinary differential equation to acquire analytical solutions is presented in this paper. The acquired solutions are obtained in special generalized hyperbolic and trigonometric forms. The different types of soliton solutions are also found. Some are illustrated by selecting the appropriate parameter values in 2D and 3D graphs. Finally, the suggested approach is reliable, effective, and beneficial for solving many nonlinear integer and fractional order differential equations.

References

  • A-M. Wazwaz, Partial differential equations and solitary waves theory, Nonlinear Physical Science, Springer, 2009.
  • J. Yu, Exact solitary wave solutions to a combined KdV and mKdV equation, Mathematical Methods in the Applied Sciences 23 (2000) 1667-1670.
  • M. N. B. Mohamad, Exact solutions to the combined KdV and mKdV equation, Mathematical Methods in the Applied Sciences 15 (1992) 73-78.
  • J. Zhang, New solitary wave solution of the combined KdV and mKdV equation, International Journal of Theoretical Physics 37 (5) (1998) 1541-1546.
  • Y. Peng, New exact solutions to the combined KdV and mKdV equation, International Journal of Theoretical Physics 42 (4) (2003) 863-868.
  • E. Fan, Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics, Chaos, Solitons and Fractals 16 (5) (2003) 819-839.
  • D. Kaya, I. E. Inan, A numerical application of the decomposition method for the combined KdV-mKdV equation, Applied Mathematics and Computation 168 (2) (2005) 915-926.
  • D-J. Huang, H-Q. Zhang, New exact travelling waves solutions to the combined KdV-mKdV and generalized Zakharov equations, Reports on Mathematical Physics 57 (2) (2006) 257-269.
  • A. Bekir, On travelling wave solutions to combined KdV-mKdV equation and modified Burgers-KdV equation, Communications in Nonlinear Science and Numerical Simulation 14 (4) (2009) 1038-1042.
  • E. A. B. Abdel-Salam, Quasi-periodic, periodic waves, and soliton solutions for the combined KdV-mKdV equation, Zeitschrift für Naturforschung A, 64(9-10) (2009) 639-645.
  • W. Zhang, L. Tian, Generalized solitary solution and periodic solution of the combined KdV-mKdV equation with variable coefficients using the exp-function method, International Journal of Nonlinear Sciences and Numerical Simulation 10 (6) (2009) 711-715.
  • D. Lu, Q. Shi, New Jacobi elliptic functions solutions for the combined KdV-mKdV equation, International Journal of Nonlinear Science 10 (3) (2010) 320-325.
  • H. Naher, F.A. Abdullah, Some new solutions of the combined KdV-mKdV equation by using the improved (G^'/G)-expansion method, World Applied Sciences Journal 16 (11) (2012) 1559-1570.
  • Y. Huang, Y. Wu, F. Meng, W. Yuan, All exact traveling wave solutions of the combined KdV-mKdV equation, Advances in Difference Equations 2014 (2014) 261.
  • A. R. Seadawy, K. El-Rashidy, Classification of multiply travelling wave solutions for coupled Burgers, combined KdV-modified KdV, and Schrödinger-KdV equations, Abstract and Applied Analysis 2015 (2015) 369294.
  • Md. N. Alam, F. B. M. Belgacem, M. A. Akbar, Analytical treatment of the evolutionary (1+1)-dimensional combined KdV-mKdV equation via the novel (G'/G)-expansion method, Journal of Applied Mathematics and Physics 3 (2015) 1571-1579.
  • S. T. R. Rizvi, K. Ali, A. Sardar, M. Younis, A. Bekir, Symbolic computation and abundant travelling wave solutions to KdV-mKdV equation, Pramana Journal of Physics 88 (2017) 16.
  • N. M. Yağmurlu, O. Tasbozan, Y. Uçar, A. Esen, Numerical solutions of the combined KdV-mKdV equation by a quintic B-spline collocation method, Applied Mathematics & Information Sciences Letters 4 (1) (2016) 19-24.
  • H. Hu, M. Tan, X. Hu, New interaction solutions to the combined KdV-mKdV equation from CTE method, Journal of the Association of Arab Universities for Basic and Applied Sciences 21 (2016) 64-67.
  • H. Bulut, T. A. Sulaiman, H. M. Baskonus, A. A. Sandulyak, New solitary and optical wave structures to the (1+1)-dimensional combined KdV-mKdV equation, Optik 135 (2017) 327-336.
  • N. M. Yağmurlu, Y. Uçar, A. Başhan, Numerical approximation of the combined KdV-mKdV equation via the quintic B-Spline differential quadrature method, Adıyaman University Journal of Science 9 (2) (2019) 386-403.
  • M. Liu, Y. Zheng, New solutions for an elliptic equation method and its applications in nonlinear evolution equations, Journal of Applied Mathematics and Physics 10 (2022) 2415-2431.
  • R. Yuan, Y. Shi, S. Zhao, J. Zhao, The combined KdV-mKdV equation: Bilinear approach and rational solutions with free multi-parameters, Results in Physics 55 (2023) 107188.
  • T. Ak, B. İnan, A study on approximate analytic solutions of the combined KdV-mKdV equation, Gümüşhane University Journal of Science and Technology, 10 (4) (2020) 917-924.
  • N. H. Ali, S. A. Mohammed, J. Manafian, Study on the simplified MCH equation and the combined KdV-mKdV equations with solitary wave solutions, Partial Differential Equations in Applied Mathematics, 9 (2024) 100599.
  • E. Hussain, I. Mahmood, S. A. A. Shah, M. Khatoon, E. A. Az-Zo’bi, A. E. Ragab, The study of coherent structures of combined KdV-mKdV equation through integration schemes and stability analysis, Optical and Quantum Electronics 56 (2024) 723.
  • M. Vivas-Cortez, G. Akram, M. Sadaf, S. Arshed, K. Rehan, K. Farooq, Traveling wave behavior of new (2+1)-dimensional combined KdV-mKdV equation, Results in Physics 45 (2023) 106244.
  • B. Ahmad, J. J. Nieto, Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations, Abstract and Applied Analysis, 2009 (2009) 494720.
  • Y. Wang, S. Liang, Q. Wang, Existence results for fractional differential equations with integral and multi-point boundary conditions, Boundary Value Problems 2018 (2018) 4.
  • M. Şenol, A. Ata, Approximate solution of time-fractional KdV equations by residual power series method, Journal of Balıkesir University Institute of Science and Technology 20 (1) (2018) 430-439.
  • G. Akram, M. Sadaf, M. Abbas, I. Zainab S. R. Gillani, Efficient techniques for traveling wave solutions of time-fractional Zakharov-Kuznetsov equation, Mathematics and Computers in Simulation 193 (2022) 607-622.
  • M. M. A. Qurashi, Z. Korpinar, D. Baleanu, M. Inc, A new iterative algorithm on the time-fractional Fisher equation: residual power series method, Advances in Mechanical Engineering 9 (9) (2017).
  • Z. Körpınar, The residual power series method for solving fractional Klein-Gordon equation, Sakarya University Journal of Science 21 (3) (2017) 285-293.
  • O. Tasbozan, Y. Çenesiz, A. Kurt, New solutions for conformable fractional Boussinesq and combined KdV-mKdV equations using Jacobi elliptic function expansion method, The European Physical Journal Plus 131 (2016) 244.
  • D. Kaya, S. Gülbahar, A. Yokuş, M. Gülbahar, Solutions of the fractional combined KdV-mKdV equation with collocation method using radial basis function and their geometrical obstructions, Advances in Difference Equations 2018 (2018) 77.
  • M. N. Rafiq, A. Majeed, S. Yao, M. Kamran, M. H. Rafiq, M. Inc, Analytical solutions of nonlinear time fractional evaluation equations via unified method with different derivatives and their comparison, Results in Physics 26 (2021) 104357.
  • H., Jafari, H. Tajadodi, D. Baleanu, A. A. Al-Zahrani, Y. A. Alhamed, A. H. Zahid, Exact solutions of Boussinesq KdV-mKdV equations by fractional sub-equation method, Romanian Reports in Physics 65 (4) (2013) 1119-1124.
  • E. A. B. Abdel-Salam, Z. I. A. Al-Muhiameed, Analytic solutions of the space-time fractional combined KdV-mKdV equation, Mathematical Problems in Engineering 2015 (2015) 871635.
  • N. Ullah, M. I. Asjad, J. Awrejcewicz, T. Muhammad, D. Baleanu, On soliton solutions of fractional-order nonlinear model appears in physical sciences, AIMS Mathematics 7 (5) (2022) 7421-7440.
  • M. I. Asjad, N. Ullah, H. Rehman, D. Baleanu, Optical solitons for conformable space-time fractional nonlinear model, Journal of Mathematics and Computer Science 27 (2022) 28-41.
  • A. K. Alsharidi, A. Bekir, Discovery of new exact wave solutions to the M-fractional complex three coupled Maccari's system by Sardar subequation scheme, Symmetry 15 (8) (2023) 1567.
  • M. Raheel, A. Zafar, A. Bekir, K. U. Tariq, Exact wave solutions and obliqueness of truncated M-fractional Heisenberg ferromagnetic spin chain model through two analytical techniques, Waves in Random and Complex Media (2023), https://doi.org/10.1080/17455030.2023.2173550, Accessed 10 Jan 2025.
  • T. Rasool, R. Hussain, H. Rezazadeh, A. Ali, U. Demirbilek, Novel soliton structures of truncated M-fractional (4+1)-dim Fokas wave model, Nonlinear Engineering 12 (2023) 0220292.
  • M. M. A. Khater, Multi-vector with nonlocal and non-singular kernel ultrashort optical solitons pulses waves in birefringent fibers, Chaos, Solitons and Fractals 167 (2023) 113098.
  • C. Pleumpreedaporn, S. Pleumpreedaporn, E. J. Moore, S. Sirisubtawee, S. Sungnul, Novel exact traveling wave solutions for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation with Atangana's space and time beta-derivatives via the Sardar subequation method, Thai Journal of Mathematics 22 (1) (2024).
  • M. Şenol, L. Akinyemi, H. Nkansah, W. Adel, New solutions four novel generalized nonlinear fractional fifth-order equations, Journal of Ocean Engineering and Science 9 (1) (2024) 59-65.
  • L. Akinyemi, M. Şenol, O. Tasbozan, A. Kurt, Multiple-solitons for generalized (2+1)-dimensional conformable Korteweg-de Vries-Kadomtsev-Petviashvili equation, Journal of Ocean Engineering and Science 7 (6) (2022) 536-542.
  • S. Çulha Ünal, A. Daşcıoğlu, Exact solutions of time fractional Korteweg-de Vries-Zakharov-Kuznetsov equation, Mathematical Methods in the Applied Sciences 44 (11) (2021) 9557-9570.
  • A. Daşcıoğlu, S. Çulha Ünal, New exact solutions for the space-time fractional Kawahara equation, Applied Mathematical Modelling 89 Part 1 (2021) 952-965.
  • S. Çulha, A. Daşcıoğlu, Analytic solutions of the space-time conformable fractional Klein-Gordon equation in general form, Waves in Random and Complex Media 29 (4) (2019) 775-790.
  • R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, Journal of Computational and Applied Mathematics 264 (2014) 65-70.
  • T. Abdeljawad, On conformable fractional calculus, Journal of Computational and Applied Mathematics 279 (2015) 57-66.
  • H. Rezazadeh, M. Inc, D. Baleanu, New solitary wave solutions for variants of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equations, Frontiers in Physics 8 (2020) 332.
  • H. Miyakawa, S. Takeuchi, Applications of a duality between generalized trigonometric and hyperbolic functions, Journal of Mathematical Analysis and Applications 502 (1) (2021) 125241.
  • E. Neuman, Inequalities for the generalized trigonometric, hyperbolic, and Jacobian elliptic functions, Journal of Mathematical Inequalities 9 (3) (2015) 709-726.
  • H. Kobayashi, S. Takeuchi, Applications of generalized trigonometric functions with two parameters, Communications on Pure and Applied Analysis 18 (3) (2019) 1509-1521.
  • S. Takeuchi, Applications of generalized trigonometric functions with two parameters II, Differential Equations & Applications 11 (4) (2019) 563-575.
  • S. Takeuchi, Multiple-angle formulas of generalized trigonometric functions with two parameters, Journal of Mathematical Analysis and Applications 444 (2) (2016) 1000-1014.
  • M. Remoissenet, Waves Called Solitons: Concepts and Experiments, 3rd Edition, Springer, 1999.

Year 2025, Volume: 14 Issue: 1, 1 - 13, 30.04.2025
https://doi.org/10.54187/jnrs.1619374

Abstract

References

  • A-M. Wazwaz, Partial differential equations and solitary waves theory, Nonlinear Physical Science, Springer, 2009.
  • J. Yu, Exact solitary wave solutions to a combined KdV and mKdV equation, Mathematical Methods in the Applied Sciences 23 (2000) 1667-1670.
  • M. N. B. Mohamad, Exact solutions to the combined KdV and mKdV equation, Mathematical Methods in the Applied Sciences 15 (1992) 73-78.
  • J. Zhang, New solitary wave solution of the combined KdV and mKdV equation, International Journal of Theoretical Physics 37 (5) (1998) 1541-1546.
  • Y. Peng, New exact solutions to the combined KdV and mKdV equation, International Journal of Theoretical Physics 42 (4) (2003) 863-868.
  • E. Fan, Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics, Chaos, Solitons and Fractals 16 (5) (2003) 819-839.
  • D. Kaya, I. E. Inan, A numerical application of the decomposition method for the combined KdV-mKdV equation, Applied Mathematics and Computation 168 (2) (2005) 915-926.
  • D-J. Huang, H-Q. Zhang, New exact travelling waves solutions to the combined KdV-mKdV and generalized Zakharov equations, Reports on Mathematical Physics 57 (2) (2006) 257-269.
  • A. Bekir, On travelling wave solutions to combined KdV-mKdV equation and modified Burgers-KdV equation, Communications in Nonlinear Science and Numerical Simulation 14 (4) (2009) 1038-1042.
  • E. A. B. Abdel-Salam, Quasi-periodic, periodic waves, and soliton solutions for the combined KdV-mKdV equation, Zeitschrift für Naturforschung A, 64(9-10) (2009) 639-645.
  • W. Zhang, L. Tian, Generalized solitary solution and periodic solution of the combined KdV-mKdV equation with variable coefficients using the exp-function method, International Journal of Nonlinear Sciences and Numerical Simulation 10 (6) (2009) 711-715.
  • D. Lu, Q. Shi, New Jacobi elliptic functions solutions for the combined KdV-mKdV equation, International Journal of Nonlinear Science 10 (3) (2010) 320-325.
  • H. Naher, F.A. Abdullah, Some new solutions of the combined KdV-mKdV equation by using the improved (G^'/G)-expansion method, World Applied Sciences Journal 16 (11) (2012) 1559-1570.
  • Y. Huang, Y. Wu, F. Meng, W. Yuan, All exact traveling wave solutions of the combined KdV-mKdV equation, Advances in Difference Equations 2014 (2014) 261.
  • A. R. Seadawy, K. El-Rashidy, Classification of multiply travelling wave solutions for coupled Burgers, combined KdV-modified KdV, and Schrödinger-KdV equations, Abstract and Applied Analysis 2015 (2015) 369294.
  • Md. N. Alam, F. B. M. Belgacem, M. A. Akbar, Analytical treatment of the evolutionary (1+1)-dimensional combined KdV-mKdV equation via the novel (G'/G)-expansion method, Journal of Applied Mathematics and Physics 3 (2015) 1571-1579.
  • S. T. R. Rizvi, K. Ali, A. Sardar, M. Younis, A. Bekir, Symbolic computation and abundant travelling wave solutions to KdV-mKdV equation, Pramana Journal of Physics 88 (2017) 16.
  • N. M. Yağmurlu, O. Tasbozan, Y. Uçar, A. Esen, Numerical solutions of the combined KdV-mKdV equation by a quintic B-spline collocation method, Applied Mathematics & Information Sciences Letters 4 (1) (2016) 19-24.
  • H. Hu, M. Tan, X. Hu, New interaction solutions to the combined KdV-mKdV equation from CTE method, Journal of the Association of Arab Universities for Basic and Applied Sciences 21 (2016) 64-67.
  • H. Bulut, T. A. Sulaiman, H. M. Baskonus, A. A. Sandulyak, New solitary and optical wave structures to the (1+1)-dimensional combined KdV-mKdV equation, Optik 135 (2017) 327-336.
  • N. M. Yağmurlu, Y. Uçar, A. Başhan, Numerical approximation of the combined KdV-mKdV equation via the quintic B-Spline differential quadrature method, Adıyaman University Journal of Science 9 (2) (2019) 386-403.
  • M. Liu, Y. Zheng, New solutions for an elliptic equation method and its applications in nonlinear evolution equations, Journal of Applied Mathematics and Physics 10 (2022) 2415-2431.
  • R. Yuan, Y. Shi, S. Zhao, J. Zhao, The combined KdV-mKdV equation: Bilinear approach and rational solutions with free multi-parameters, Results in Physics 55 (2023) 107188.
  • T. Ak, B. İnan, A study on approximate analytic solutions of the combined KdV-mKdV equation, Gümüşhane University Journal of Science and Technology, 10 (4) (2020) 917-924.
  • N. H. Ali, S. A. Mohammed, J. Manafian, Study on the simplified MCH equation and the combined KdV-mKdV equations with solitary wave solutions, Partial Differential Equations in Applied Mathematics, 9 (2024) 100599.
  • E. Hussain, I. Mahmood, S. A. A. Shah, M. Khatoon, E. A. Az-Zo’bi, A. E. Ragab, The study of coherent structures of combined KdV-mKdV equation through integration schemes and stability analysis, Optical and Quantum Electronics 56 (2024) 723.
  • M. Vivas-Cortez, G. Akram, M. Sadaf, S. Arshed, K. Rehan, K. Farooq, Traveling wave behavior of new (2+1)-dimensional combined KdV-mKdV equation, Results in Physics 45 (2023) 106244.
  • B. Ahmad, J. J. Nieto, Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations, Abstract and Applied Analysis, 2009 (2009) 494720.
  • Y. Wang, S. Liang, Q. Wang, Existence results for fractional differential equations with integral and multi-point boundary conditions, Boundary Value Problems 2018 (2018) 4.
  • M. Şenol, A. Ata, Approximate solution of time-fractional KdV equations by residual power series method, Journal of Balıkesir University Institute of Science and Technology 20 (1) (2018) 430-439.
  • G. Akram, M. Sadaf, M. Abbas, I. Zainab S. R. Gillani, Efficient techniques for traveling wave solutions of time-fractional Zakharov-Kuznetsov equation, Mathematics and Computers in Simulation 193 (2022) 607-622.
  • M. M. A. Qurashi, Z. Korpinar, D. Baleanu, M. Inc, A new iterative algorithm on the time-fractional Fisher equation: residual power series method, Advances in Mechanical Engineering 9 (9) (2017).
  • Z. Körpınar, The residual power series method for solving fractional Klein-Gordon equation, Sakarya University Journal of Science 21 (3) (2017) 285-293.
  • O. Tasbozan, Y. Çenesiz, A. Kurt, New solutions for conformable fractional Boussinesq and combined KdV-mKdV equations using Jacobi elliptic function expansion method, The European Physical Journal Plus 131 (2016) 244.
  • D. Kaya, S. Gülbahar, A. Yokuş, M. Gülbahar, Solutions of the fractional combined KdV-mKdV equation with collocation method using radial basis function and their geometrical obstructions, Advances in Difference Equations 2018 (2018) 77.
  • M. N. Rafiq, A. Majeed, S. Yao, M. Kamran, M. H. Rafiq, M. Inc, Analytical solutions of nonlinear time fractional evaluation equations via unified method with different derivatives and their comparison, Results in Physics 26 (2021) 104357.
  • H., Jafari, H. Tajadodi, D. Baleanu, A. A. Al-Zahrani, Y. A. Alhamed, A. H. Zahid, Exact solutions of Boussinesq KdV-mKdV equations by fractional sub-equation method, Romanian Reports in Physics 65 (4) (2013) 1119-1124.
  • E. A. B. Abdel-Salam, Z. I. A. Al-Muhiameed, Analytic solutions of the space-time fractional combined KdV-mKdV equation, Mathematical Problems in Engineering 2015 (2015) 871635.
  • N. Ullah, M. I. Asjad, J. Awrejcewicz, T. Muhammad, D. Baleanu, On soliton solutions of fractional-order nonlinear model appears in physical sciences, AIMS Mathematics 7 (5) (2022) 7421-7440.
  • M. I. Asjad, N. Ullah, H. Rehman, D. Baleanu, Optical solitons for conformable space-time fractional nonlinear model, Journal of Mathematics and Computer Science 27 (2022) 28-41.
  • A. K. Alsharidi, A. Bekir, Discovery of new exact wave solutions to the M-fractional complex three coupled Maccari's system by Sardar subequation scheme, Symmetry 15 (8) (2023) 1567.
  • M. Raheel, A. Zafar, A. Bekir, K. U. Tariq, Exact wave solutions and obliqueness of truncated M-fractional Heisenberg ferromagnetic spin chain model through two analytical techniques, Waves in Random and Complex Media (2023), https://doi.org/10.1080/17455030.2023.2173550, Accessed 10 Jan 2025.
  • T. Rasool, R. Hussain, H. Rezazadeh, A. Ali, U. Demirbilek, Novel soliton structures of truncated M-fractional (4+1)-dim Fokas wave model, Nonlinear Engineering 12 (2023) 0220292.
  • M. M. A. Khater, Multi-vector with nonlocal and non-singular kernel ultrashort optical solitons pulses waves in birefringent fibers, Chaos, Solitons and Fractals 167 (2023) 113098.
  • C. Pleumpreedaporn, S. Pleumpreedaporn, E. J. Moore, S. Sirisubtawee, S. Sungnul, Novel exact traveling wave solutions for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation with Atangana's space and time beta-derivatives via the Sardar subequation method, Thai Journal of Mathematics 22 (1) (2024).
  • M. Şenol, L. Akinyemi, H. Nkansah, W. Adel, New solutions four novel generalized nonlinear fractional fifth-order equations, Journal of Ocean Engineering and Science 9 (1) (2024) 59-65.
  • L. Akinyemi, M. Şenol, O. Tasbozan, A. Kurt, Multiple-solitons for generalized (2+1)-dimensional conformable Korteweg-de Vries-Kadomtsev-Petviashvili equation, Journal of Ocean Engineering and Science 7 (6) (2022) 536-542.
  • S. Çulha Ünal, A. Daşcıoğlu, Exact solutions of time fractional Korteweg-de Vries-Zakharov-Kuznetsov equation, Mathematical Methods in the Applied Sciences 44 (11) (2021) 9557-9570.
  • A. Daşcıoğlu, S. Çulha Ünal, New exact solutions for the space-time fractional Kawahara equation, Applied Mathematical Modelling 89 Part 1 (2021) 952-965.
  • S. Çulha, A. Daşcıoğlu, Analytic solutions of the space-time conformable fractional Klein-Gordon equation in general form, Waves in Random and Complex Media 29 (4) (2019) 775-790.
  • R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, Journal of Computational and Applied Mathematics 264 (2014) 65-70.
  • T. Abdeljawad, On conformable fractional calculus, Journal of Computational and Applied Mathematics 279 (2015) 57-66.
  • H. Rezazadeh, M. Inc, D. Baleanu, New solitary wave solutions for variants of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equations, Frontiers in Physics 8 (2020) 332.
  • H. Miyakawa, S. Takeuchi, Applications of a duality between generalized trigonometric and hyperbolic functions, Journal of Mathematical Analysis and Applications 502 (1) (2021) 125241.
  • E. Neuman, Inequalities for the generalized trigonometric, hyperbolic, and Jacobian elliptic functions, Journal of Mathematical Inequalities 9 (3) (2015) 709-726.
  • H. Kobayashi, S. Takeuchi, Applications of generalized trigonometric functions with two parameters, Communications on Pure and Applied Analysis 18 (3) (2019) 1509-1521.
  • S. Takeuchi, Applications of generalized trigonometric functions with two parameters II, Differential Equations & Applications 11 (4) (2019) 563-575.
  • S. Takeuchi, Multiple-angle formulas of generalized trigonometric functions with two parameters, Journal of Mathematical Analysis and Applications 444 (2) (2016) 1000-1014.
  • M. Remoissenet, Waves Called Solitons: Concepts and Experiments, 3rd Edition, Springer, 1999.
There are 59 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Research Article
Authors

Sevil Çulha Ünal 0000-0001-7447-9219

Submission Date January 13, 2025
Acceptance Date April 15, 2025
Publication Date April 30, 2025
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Çulha Ünal, S. (2025). Solutions of the Fractional Combined KdV-mKdV Equation Using the Special Generalized Hyperbolic and Trigonometric Functions. Journal of New Results in Science, 14(1), 1-13. https://doi.org/10.54187/jnrs.1619374
AMA 1.Çulha Ünal S. Solutions of the Fractional Combined KdV-mKdV Equation Using the Special Generalized Hyperbolic and Trigonometric Functions. JNRS. 2025;14(1):1-13. doi:10.54187/jnrs.1619374
Chicago Çulha Ünal, Sevil. 2025. “Solutions of the Fractional Combined KdV-MKdV Equation Using the Special Generalized Hyperbolic and Trigonometric Functions”. Journal of New Results in Science 14 (1): 1-13. https://doi.org/10.54187/jnrs.1619374.
EndNote Çulha Ünal S (April 1, 2025) Solutions of the Fractional Combined KdV-mKdV Equation Using the Special Generalized Hyperbolic and Trigonometric Functions. Journal of New Results in Science 14 1 1–13.
IEEE [1]S. Çulha Ünal, “Solutions of the Fractional Combined KdV-mKdV Equation Using the Special Generalized Hyperbolic and Trigonometric Functions”, JNRS, vol. 14, no. 1, pp. 1–13, Apr. 2025, doi: 10.54187/jnrs.1619374.
ISNAD Çulha Ünal, Sevil. “Solutions of the Fractional Combined KdV-MKdV Equation Using the Special Generalized Hyperbolic and Trigonometric Functions”. Journal of New Results in Science 14/1 (April 1, 2025): 1-13. https://doi.org/10.54187/jnrs.1619374.
JAMA 1.Çulha Ünal S. Solutions of the Fractional Combined KdV-mKdV Equation Using the Special Generalized Hyperbolic and Trigonometric Functions. JNRS. 2025;14:1–13.
MLA Çulha Ünal, Sevil. “Solutions of the Fractional Combined KdV-MKdV Equation Using the Special Generalized Hyperbolic and Trigonometric Functions”. Journal of New Results in Science, vol. 14, no. 1, Apr. 2025, pp. 1-13, doi:10.54187/jnrs.1619374.
Vancouver 1.Çulha Ünal S. Solutions of the Fractional Combined KdV-mKdV Equation Using the Special Generalized Hyperbolic and Trigonometric Functions. JNRS [Internet]. 2025 Apr. 1;14(1):1-13. Available from: https://izlik.org/JA33NW54BP


TR Dizin 31688

EBSCO30456


Electronic Journals Library   30356

 DOAJ   30355

                                                        WorldCat  3035730355

Scilit 30360


SOBİAD 30359


29388 JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).